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Chapitre 13 - Espaces vectoriels
Ce chapitre introduit la structure fondamentale d’espace vectoriel qui forme la base de l’algèbre linéaire. Dans tout

ce chapitre K désigne l’un des ensembles de nombres R ou C.

1 Espaces vectoriels et combinaisons linéaires

1.1 Espaces vectoriels

Définition 1 - Espace vectoriel. Un K-espace vectoriel ou espace vectoriel sur K est un triplet pE,`, ¨q où E
est un ensemble et ` et ¨ des lois vérifiant les propriétés suivantes :

• Loi d’addition interne « ` » :
(i) (associativité de `) pour tous x, y, z P E, px` yq ` z “ x` py ` zq ;
(ii) (commutativité de `) pour tous x, y P E, x` y “ y ` x ;
(iii) (neutralité pour `) il existe un élément de E, noté 0E et nommé vecteur nul de E, tel que,

@x P E, x` 0E “ 0E ` x “ x ;

(iv) (opposé pour `) pour tout x P E, il existe un élément de E, noté ´x et nommé opposé de x, tel que

x` p´xq “ p´xq ` x “ 0E ;

• Loi de multiplication externe « ¨ » :
(v) (neutralité mixte) pour tout x P E, 1 ¨ x “ x ;
(vi) (distributivité mixte 1 ) pour tout x, y P E et λ P K, λ ¨ px` yq “ λ ¨ x` λ ¨ y ;
(vii) (distributivité mixte 2 ) pour tout x P E et λ, µ P K, pλ` µq ¨ x “ λ ¨ x` µ ¨ x ;
(viii) (associativité mixte) pour tout x P E et λ, µ P K, λ ¨ pµ ¨ xq “ pλµq ¨ x.

Les éléments d’un espace vectoriel E sont appelés des vecteurs et les éléments de K, qui agissent par l’intermédiaire
de la loi externe ¨ sur ceux de E, des scalaires. La loi ` est appelée addition et la loi ¨ multiplication par un scalaire.

Remarque 2 Ce que l’on appellent « lois » sont en réalité des applications de E ˆ E dans E (pour l’addition) et
de Kˆ E dans E (pour la multiplication par un scalaire).

Les mathématiciens ont introduit la structure d’espace vectoriel, hermétique au premier abord, car ils ont remarqué
que cette structure est omniprésente en mathématiques. Ainsi, en mener l’étude systématique s’est imposée.

On peut évidemment s’interroger sur l’origine de la terminologie d’« espace vectoriel » et de « vecteurs » dans un
cadre aussi abstrait. La réponse étant que les règles de la définition précédentes sont exactement celles classiquement
vérifiées par les vecteurs usuels du plan et de l’espace. Dorénavant, les vecteurs pourront désigner des objets aussi
divers que des matrices, des fonctions ou des suites, que l’on pourra ainsi s’efforcer de visualiser géométriquement.

Remarque 3

• Un espace vectoriel E est nécessairement non vide, puisqu’il contient toujours le vecteur nul 0E .
• On écrit la plupart du temps « λx » en lieu et place de « λ ¨ x », pour λ P K et x P E.
• En géométrie, il est d’usage de noter les vecteurs ~x avec une flèche. En revanche, on utilise usuellement la
notation plus légère sans flèche pour les vecteurs d’un espace vectoriel. Il faut donc être vigilant et veiller à ne
pas confondre vecteurs et scalaires.

• Comme le suggère leurs notations, le vecteur nul 0E et l’opposé ´x d’un vecteur x de E sont uniques. En effet :
‹ si 01E désigne aussi un élément neutre pour l’addition, alors 0E “ 0E ` 01E “ 01E ;
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‹ si x1 désigne aussi un opposé de x pour `, alors

x1 “ x1 ` 0E “ x1 ` px` p´xqq “ px1 ` xq ` p´xq “ 0E ` p´xq “ ´x.

• De façon générale, l’addition dans E jouit des mêmes propriétés que l’addition dans les ensembles classiques de
nombres, e.g. Z, R et C ; notamment, la règle de simplification suivante est vérifiée :

@x, y, z P E, x` y “ x` z ùñ y “ z.

Théorème 4 - Règles de calcul dans un espace vectoriel. Soit E un K-espace vectoriel.
(i) Pour tous x P E et λ P K, λ ¨ x “ 0E ðñ λ “ 0 ou x “ 0E .
(ii) Pour tout x P E, ´x “ p´1q ¨ x, où ´x est l’opposé de x dans E et ´1 l’opposé de 1 dans K.

Démonstration.
(i) Pour tous x P E et λ P K,

• 0 ¨ x “ p0` 0q ¨ x “ 0 ¨ x` 0 ¨ x et, après simplification, 0 ¨ x “ 0E .
• λ ¨ 0E “ λ ¨ p0E ` 0Eq “ λ ¨ 0E ` λ ¨ 0E et, à nouveau par simplification, λ ¨ 0E “ 0E .

• Si λ ¨ x “ 0E et λ ‰ 0, alors x “ 1 ¨ x “

ˆ

1

λ
ˆ λ

˙

¨ x “
1

λ
¨ pλ ¨ xq “

1

λ
¨ 0E “ 0E .

(ii) Pour tout x P E, x` p´1q ¨ x “ 1 ¨ x` p´1q ¨ x “ p1´ 1q ¨ x “ 0 ¨ x “ 0E , ainsi ´x “ p´1q ¨ x.
�

Attention ! On veillera à ne pas confondre 0E l’élément nul de l’espace vectoriel E avec 0 l’élément nul
de l’ensemble des scalaires K. 0E est un vecteur tandis que 0 est un scalaire !

Exemple 5 pK,`,ˆq est un K-espace vectoriel, la multiplication classique ˆ dans K étant assimilée à la loi externe
« ¨ ».

Exemple 6 - Familles de scalaires. L’ensemble Kn “
n fois

hkkkkkkikkkkkkj

Kˆ . . .ˆK est un K-espace vectoriel, pour tout n P N˚, muni
des lois

@px1, . . . , xnq P Kn, @py1, . . . , ynq P Kn, px1, . . . , xnq ` py1, . . . , ynq “ px1 ` y1, . . . , xn ` ynq.

On retrouve ici le cadre des vecteurs du plan avec R2 et celui des vecteurs de l’espace avec R3.
Par exemple, p1, 4,´3q ` 2 ¨ p0, 2, 5q “ p1, 8, 7q – les opérations se faisant coordonnées par coordonnées.

Notez que l’exemple précédent est un cas particulier d’un produit cartésien d’espaces vectoriels, mais cet exemple
suffit amplement plutôt que de faire un énoncé général.

Exemple 7 - Matrices. Pour tous n, p P N˚, pMn,ppKq,`, ¨q est un K-espace vectoriel pour ses lois usuelles d’addition
et de multiplication par un scalaire.

Exemple 8 - Polynômes. On note KrXs l’ensemble des polynômes à coefficients dans K. Alors KrXs est un K-espace
vectoriel pour ses lois usuelles d’addition et de multiplication par un scalaire. On note KnrXs l’ensemble des polynômes
dont le degré est inférieur ou égal à n. C’est aussi un K-espace vectoriel pour n P N fixé.

Proposition 9 - Espace vectoriel de fonctions. Soit X un ensemble non vide et E un K-espace vectoriel.
L’ensemble EX des fonctions de X dans E, naturellement muni de ses règles d’additions et de multiplication par
un scalaire, est un espace vectoriel.

Les deux exemples suivants tombent dans le cadre de cette proposition :
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Exemple 10 - Fonctions et suites réelles.
• Pour tout intervalle I non vide, l’ensemble RI des fonctions de I dans R est un R-espace vectoriel pour l’addition
des fonctions et leur multiplication par un réel (il s’agit du théorème précédent avec X “ I et E “ R).

• On peut raffiner en montrant que C0pI,Rq ou C1pI,Rq sont aussi des espaces vectoriels. Nous aurons bientôt
des outils pour éviter de vérifier tous les axiomes.

• L’ensemble RN des suites réelles est un R-espace vectoriel pour l’addition des suites et leur multiplication par un
réel (il s’agit du théorème précédent avec X “ N et E “ R).

• L’exemple 7 est un aussi un cas particulier de la proposition précédente avec X “ J1 , nKˆ J1 , pK et E “ K.

Exemple 11 Tout C-espace vectoriel est aussi un R-espace vectoriel. En particulier, C est muni d’une structure de
R-espace vectoriel.
En effet, si E est un C-espace vectoriel, λ ¨ x est défini pour tous λ P C et x P E, donc en particulier pour tout λ P R,
ce qui justifie que l’on puisse considérer E comme un R-espace vectoriel, par restriction de l’ensemble des scalaires.

Attention ! Nous avons vu une longue liste d’ensembles qui sont des espaces vectoriels. Combien pouvez-
vous en citer ?
Il y a un piège dangereux : il n’y a aucune raison qu’un espace vectoriel quelconque dispose d’un produit interne.
Ainsi, même si les « vecteurs » ont perdu leur flèche, étant donné un K espace vectoriel quelconque, et x et y deux
éléments de E, on évitera de faire le produit xy, qui n’a aucune raison d’avoir un sens.
Bien entendu, certains espaces vecoriels possèdent un produit interne, mais ce sont des cas particuliers souvent différents
les uns des autres.

Exemple 12 Les ensembles suivants du plan sont-ils des espaces vectoriels ?
• L’ensemble C “ tpx, yq P pR2q,´1 ď x ď 1 et ´ 1 ď y ď 1u.
• L’ensemble D “ tpx, yq P pR2q, xy “ 0u.
• Une droite de R2 ne passant pas par l’origine. Et si elle passe par l’origine ?

1.2 Combinaisons linéaires

Définition 13 - Combinaisons linéaires d’un nombre fini de vecteurs.
Soit E un K-espace vectoriel et x1, . . . , xn P E. On appelle combinaison linéaire des vecteurs x1, . . . , xn tout vecteur

de E de la forme
n
ÿ

k“1

λkxk “ λ1x1 ` . . .` λnxn, avec λ1, . . . , λn P K (les coefficients de la combinaison linéaire).

Les espaces vectoriels sont conçus pour pouvoir réaliser des combinaisons linéaires (mélanges
d’additions et de multiplications par des scalaires).

Cette notion se conçoit géométriquement très simplement dans le plan ou l’espace. Sur la figure
ci-contre, ~u est combinaison linéaire de~i et ~j, mais ce n’est pas le cas de ~v. Par contre, dans l’espace,
tout vecteur est combinaison linéaire de ~i, ~j et ~k.

Attention ! Péché d’identification.

En général :
n
ÿ

k“1

λkxk “
n
ÿ

k“1

µkxk ùñ λk “ µk, pour tout k P J1 , nK.

Par exemple : p1, 1q ` 2p0, 1q ` 2p1, 0q “ p3, 3q “ 2p1, 1q ` p0, 1q ` p1, 0q.

~i
~j

~k

~u

~v
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Exemple 14 Dans R2, montrer que p2, 7q est combinaison linéaire des vecteurs p5,´2q et p1,´3q
En effet,

p2, 7q est combinaison linéaire de p5,´2q et p1,´3q ðñ Dλ, µ P R, p2, 7q “ λp5,´2q ` µp1,´3q

ðñ Dλ, µ P R,
"

5λ ` µ “ 2
´2λ ´ 3µ “ 7.

Nous sommes ainsi ramené à la résolution d’un système linéaire. Or, pour tout pλ, µq P R2 :
"

5λ ` µ “ 2
´2λ ´ 3µ “ 7

ðñ

"

5λ ` µ “ 2
13λ “ 13 L2 Ð L2 ` 3L1

ðñ λ “ 1 et µ “ ´3.

Ainsi, le système étudié possède des solutions, comme souhaité.

Exemple 15 Dans R3, montrer que tout vecteur est combinaison linéaire des vecteurs p1, 2, 3q, p2, 5, 6q et p1, 5, 4q.

Exemple 16 Dans M2pRq,
ˆ

´1 2
2 0

˙

n’est pas combinaison linéaire des vecteurs
ˆ

1 1
0 0

˙

,
ˆ

´2 1
3 2

˙

et
ˆ

1 0
´1 1

˙

.

En effet,
ˆ

´1 2
2 0

˙

est combinaison linéaire de
ˆ

1 1
0 0

˙

,
ˆ

´2 1
3 2

˙

et
ˆ

1 0
´1 1

˙

ðñ Dx, y, z P R,
ˆ

´1 2
2 0

˙

“ x

ˆ

1 1
0 0

˙

` y

ˆ

´2 1
3 2

˙

` z

ˆ

1 0
´1 1

˙

ðñ Dx, y, z P R,

$

’

’

&

’

’

%

x ´ 2y ` z “ ´1
x ` y “ 2

3y ´ z “ 2
2y ` z “ 0.

Nous sommes ainsi ramené à la résolution d’un système linéaire. Or, pour tout px, y, zq P R3 :
$

’

’

&

’

’

%

x ´ 2y ` z “ ´1
x ` y “ 2

3y ´ z “ 2
2y ` z “ 0

ðñ

$

’

’

&

’

’

%

x ´ 2y ` z “ ´1
3y ´ z “ 3 L2 Ð L2 ´ L1

3y ´ z “ 2
2y ` z “ 0

ðñ

$

’

’

&

’

’

%

x ´ 2y ` z “ ´1
3y ´ z “ 3

0 “ ´1 L3 Ð L3 ´ L2

2y ` z “ 0

Le système est donc incompatible, d’où le résultat.

Exemple 17 Soit n P N. Tout polynôme de KnrXs est combinaison linéaire des polynômes 1, X,X2, . . . , Xn puisque

l’on peut l’écrire
n
ÿ

k“0

akX
k pour certains a0, . . . , an P K.

1.3 Sous-espaces vectoriels

Définition 18 - Sous-espace vectoriel. Soit E un K-espace vectoriel et F une partie de E stable par addition
et par multiplication par un scalaire. On dit que F est un sous-espace vectoriel de E lorsque F est un
K-espace vectoriel pour les lois ` et ¨ de E.

Notamment, pour un sous-espace vectoriel F de E, 0F “ 0E P F et F est nécessairement une partie non vide de
E. L’égalité 0F “ 0E résulte de l’unicité de l’élément neutre pour l’addition dans F .

Exemple 19 - Sous-espaces vectoriels triviaux. Si E est un K-espace vectoriel, t0Eu et E sont deux sous-espaces
vectoriels de E – parfois dits triviaux. Notamment t0Eu est un K-espace vectoriel – parfois dit trivial.
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Exemple 20 La partie F “
 

px, yq P R2
ˇ

ˇ x2 ` x` y2 “ 0
(

n’est pas un sous-espace vectoriel de R2.
En effet, F n’est pas stable par multiplication par un scalaire, puisque p´1, 0q P F tandis que p´2, 0q “ 2p´1, 0q R F .
Ni par addition d’ailleurs, puisque p´2, 0q “ p´1, 0q ` p´1, 0q.

Théorème 21 - Caractérisation des sous-espaces vectoriels. Soit E un K-espace vectoriel et F une partie de
E. S’équivalent :
(i) F est un sous-espace vectoriel de E ;

(ii)
"

‚ 0E P F ;
‚ F est stable par combinaison linéaire : @λ, µ P K, @x, y P F, λx` µy P F.

Démonstration.
• (i) ùñ (ii). Si F est un sous-espace vectoriel de E, on a vu que 0E “ 0F P F . De plus, pour tous x, y P F
et λ, µ P K, λx et µy sont des éléments de F , partie stable de E par multiplication par un scalaire, et enfin
λx` µy P F , car F est stable par addition.

• (i) ùñ (ii). Si l’assertion (ii) est vraie, F est en particulier stable par addition (pour λ “ µ “ 1) et multiplication
par un scalaire (pour y “ 0E). En outre, pour tout x P F , l’opposé ´x de x dans E appartient aussi à F (pour
λ “ ´1 et y “ 0E). Les autres axiomes de la définition des espaces vectoriels ne requièrent aucune vérification
particulière puisqu’une relation vraie sur E tout entier l’est aussi sur F .

�

Exemple 22 La partie F “
 

px, yq P R2
ˇ

ˇ 2x´ 3y “ 0
(

est un sous-espace vectoriel de R2.

. En pratique .

• Pour établir qu’une partie d’un espace vectoriel en est un sous-espace vectoriel, on utilisera toujours la carac-
térisation précédente, qui évite de vérifier les 8 axiomes de la définition d’un espace vectoriel !

• Pour montrer qu’un ensemble muni d’une addition et d’une multiplication par un scalaire est un espace vectoriel,
il suffit souvent de montrer qu’il est sous-espace d’un autre espace vectoriel connu. D’où l’importance des espaces
vectoriels classiques donnés en exemple précédemment (exemples et théorèmes 5 à 10).

Théorème 23 - Ensemble des solutions d’un système linéaire homogène. Soit A P Mn,ppKq.
L’ensemble des solutions du système linéaire homogène AX “ 0, d’inconnue X P Mp,1pKq, est un sous-espace
vectoriel de Mp,1pKq.
En particulier, toute droite de R2 passant par p0, 0q est un sous-espace vectoriel de R2, et toute droite et tout
plan de R3 passant par p0, 0, 0q sont des sous-espaces vectoriels de R3.

Démonstration. Notons S l’ensemble tX P Mp,1pKq | AX “ 0n,1u des solutions. Clairement S Ă Mp,1pKq et 0p,1 P S,
puisque Aˆ 0p,1 “ 0n,1. Montrons en outre que S est stable par combinaison linéaire : soit λ, λ1 P K et X,X 1 P S,

ApλX ` λ1X 1q “ λAX ` λ1AX 1 “ λˆ 0n,1 ` λ
1 ˆ 0n,1 “ 0n,1,

ainsi λX ` λ1X 1 P S. �

Remarque 24 Le théorème précédent établit ainsi que l’ensemble des solutions d’un système linéaire homogène
de n équations à p inconnues est un sous-espace vectoriel de Kp. En effet, un tel système équivaut à une équation
matricielle AX “ 0, avec A P Mn,ppKq, et les éléments de Mp,1pKq s’identifie à ceux de Kp par transposition.

Exemple 25 Pour tout n P N˚, l’ensemble des matrices triangulaires supérieures de taille n à coefficients dans K
est un sous-espace vectoriel de MnpKq.
En effet, il s’agit bien d’un sous-ensemble de MnpKq qui contient la matrice nulle et nous avons déjà observé que toute
combinaison linéaire de matrices triangulaires supérieures en est encore une.
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Exemple 26 - Espaces vectoriels KnrXs. Pour tout n P N, KnrXs est un sous-espace vectoriel de KrXs.
En effet, soit n P N, on a

• KnrXs Ă KrXs ;
• 0 P KnrXs, puisque deg 0 “ ´8 ď n ;
• KnrXs est stable par combinaison linéaire, puisque, pour tous P,Q P KnrXs et λ, µ P K, deg pλP ` µQq ď
max tdegP,degQu ď n.

Attention ! L’ensemble des polynômes de degré égal à n n’est pas un sous-espace vectoriel de KrXs –
il ne contient même pas le polynôme nul !

Exemple 27 - Le principe de superposition revisité. L’ensemble des solutions d’une équation différentielle linéaire
homogène sur un intervalle non vide est un espace vectoriel

Exemple 28
• L’ensemble des suites réelles convergentes est un sous-espace vectoriel du R-espace vectoriel RN des suites réelles.
• C’est aussi le cas des suites récurrentes linéaires.

Théorème 29 - Intersections de sous-espaces vectoriels. Soit E un K-espace vectoriel.
Toute intersection de sous-espaces vectoriels de E est encore un sous-espace vectoriel de E.

Démonstration. Soit I un ensemble non vide et tFiuiPI un ensemble de sous-espaces vectoriels de E. On souhaite
établir que F “

č

iPI

Fi est un sous-espace vectoriel de E. Or :

• F Ă E ;
• Pour tout i P I, 0E P Fi, puisque Fi est un sous-espace vectoriel de E, ainsi 0E P F ;
• Soit λ, µ P K et x, y P F . Pour tout i P I, puisque Fi est un sous-espace vectoriel de E et x, y P Fi, λx`µy P Fi.
Ainsi, λx` µy P F et F est stable par combinaison linéaire.

�

Attention ! En revanche, la réunion de deux sous-espaces vectoriels
n’est pas un sous-espace vectoriel en général – la stabilité par addition n’est clai-
rement pas assurée !

G

F

R F YG

1.4 Sous-espaces vectoriels engendrés par une partie

Définition-Proposition 30 - Sous-espaces vectoriels engendrés par une partie finie. Soit E un K-espace vectoriel
et X une partie finie de E.
(i) L’ensemble des combinaisons linéaires des éléments de X, noté VectpXq, est un sous-espace vectoriel de E,

appelé le sous-espace vectoriel (de E) engendré par X. Si X “ txiu1ďiďn, on le note aussi Vectpxiq1ďiďn et

Vectpxiq1ďiďn “

#

n
ÿ

i“1

λixi

ˇ

ˇ

ˇ

ˇ

ˇ

pλiq1ďiďn P K
n

+

.

(ii) VectpXq est également le plus petit sous-espace vectoriel de E contenantX. Cela signifie que VectpXq contient
X et que tout sous-espace vectoriel de E qui contient X contient aussi VectpXq.
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Démonstration.
(i) Montrons que VectpXq est un sous-espace vectoriel de E, où X “ txiu1ďiďn :

• Par définition, VectpXq Ă E ;

• 0E P VectpXq, puisque 0E “
n
ÿ

i“1

0 ¨ xi ;

• VectpXq est stable par combinaison linéaire. En effet...
(ii) Montrons que VectpXq est le plus petit sous-espace vectoriel de E contenant X, avec X “ txiu1ďiďn. D’une part,

on a bien X Ă VectpXq, puisque, pour tout i P J1 , nK, xi “
n
ÿ

j“1

δi,jxj . D’autre part, la stabilité par combinaison

linéaire implique qu’un sous-espace vectoriel de E qui contient X contient aussi toutes les combinaisons linéaires
de X, i.e. VectpXq.

�

Vectpuqu Vectpu, vquv
Vectpu, vq

u

v

. En pratique . Pour montrer qu’une partie d’un espace vectoriel en est un sous-espace vectoriel, il suffit souvent
de l’écrire comme un Vect.

Exemple 31 Le sous-espace vectoriel Vect pp1, 2qq est la droite de R2 passant par p0, 0q et dirigée par p1, 2q.

Exemple 32 Pour tout n P N, KnrXs “ Vect p1, X, . . . ,Xnq.

Exemple 33 Le plan P de R3 d’équation 2x´ y ` 3z “ 0 passe par le point p0, 0, 0q et est dirigé par les vecteurs
p1, 2, 0q et p0, 3, 1q. Montrer que P “ Vect pp1, 2, 0q, p0, 3, 1qq.
En effet, P “ tpx, 2x` 3z, zqux,zPR “ tpxp1, 2, 0q ` zp0, 3, 1qux,zPR “ Vect pp1, 2, 0q, p0, 3, 1qq.

Exemple 34 La droite D de R3 d’équation
"

5x ` y ´ z “ 0
x ` 2y ` z “ 0

passe par le point p0, 0, 0q et est dirigée par le

vecteur p1,´2, 3q. Montrer que D “ Vect pp1,´2, 3qq.
En effet, pour tout px, y, zq P R3,

px, y, zq P D ðñ

"

5x ` y ´ z “ 0
2x ` y “ 0 L2 Ð

1
3L1 `

1
3L2

ðñ y “ ´2x et z “ 3x.

Finalement D “ tpx, 2x, 3xquxPR “ txp1,´2, 3quxPR “ Vect pp1,´2, 3qq.

Exemple 35 Dans M2pRq, Vect
ˆˆ

1 0
0 0

˙

,

ˆ

0 1
0 0

˙

,

ˆ

0 0
0 1

˙˙

est l’ensemble des matrices triangulaires supérieures

de taille 2 à coefficients réels.

Exemple 36 Si l’ensemble des scalaires est R, Vectp1q “ taˆ 1uaPR “ R et Vectp1, iq “ taˆ 1` bˆ iua,bPR “ C.
En revanche, si l’ensemble des scalaires est C, Vectp1q “ taˆ 1uaPC “ C.

Proposition 37 - Propriétés des Vect. Soit E un K-espace vectoriel, X et Y des parties finies de E et x, a, b P E.
(i) Inclusion. Si X Ă Y , alors VectpXq Ă VectpY q. En particulier, si F est un sous-espace vectoriel qui contient

une famille finie pxiqi“1,...,n, alors il contient aussi Vectpxiq1ďiďn.
(ii) Oter un vecteur. Si x P X est combinaison linéaire des autres éléments de X, i.e. x P VectpXz txuq, alors

VectpXq “ Vect pXz txuq.
(iii) Remplacer un vecteur. Si b est combinaison linéaire de X Y tau avec un coefficient non nul sur a, alors

VectpX Y tauq “ VectpX Y tbuq.
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Démonstration.
(i) Toute combinaison linéaire de X est évidemment une combinaison linéaire de Y !
(ii) Soit x P X tel que x P VectpXz txuq. D’après (i), VectpXz txuq Ă VectpXq. Pour l’inclusion réciproque,

VectpXz txuq est un sous-espace vectoriel contenant Xz txu, or il contient aussi x par hypothèse, donc X et
ainsi VectpXq.

(iii) D’une part, Vect pX Y tauq contientX et a, donc aussi b par hypothèse, doncXYtbu et finalement Vect pX Y tbuq.

D’autre part, remarquons par hypothèse que b “ λa`x, avec λ P K˚ et x P VectpXq. Ainsi a “
1

λ
pb´xq et a est

combinaison linéaire de XYtbu avec un coefficient non nul sur b. Les rôles de a et b sont finalement symétriques.
�

. En pratique . Ces règles doivent être mise en pratique plutôt qu’être apprises sous la forme de formule abstraites,
voir l’exemple suivant.

Exemple 38 Dans R3 :

Vectpp1, 1, 0q, p0, 1, 0q, p1, 3, 0q
loomoon

q “ Vect pp1, 1, 0q, p0, 1, 0qq “ Vect pp1, 1, 0q ´ p0, 1, 0q, p0, 1, 0qq

“ Vect pp1, 0, 0q, p0, 1, 0qq “ R2 ˆ t0u .
Combinaison linéaire
de p1,1,0q et p0,1,0q

2 Familles de vecteurs

2.1 Parties et familles génératrices

Définition 39 - Partie/famille génératrice (finie).
Soit E un K-espace vectoriel, n P N˚ et px1, . . . , xnq une famille de vecteurs de E.
On dit que la famille pxiq1ďiďn (ou la partie txiu1ďiďn) est génératrice de E ou engendre E lorsque tout élément
de E est combinaison linéaire des vecteurs de cette famille, i.e. E “ Vectpxiq1ďiďn.

Exemple 40 Pour tout n P N, la famille p1, X, . . . ,Xnq engendre KnrXs.

Exemple 41 Pour tout px, yq P K2, px, yq “ xp1, 0q ` yp0, 1q, ainsi pp1, 0q, p0, 1qq est une famille génératrice de K2.
De même, pour tout px, y, zq P K3, px, y, zq “ xp1, 0, 0q`yp0, 1, 0q`zp0, 0, 1q, donc pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq engendre
K3. Plus généralement, pour n P N˚, posons e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, ..., en “ p0, . . . , 0, 1q. La famille

peiq1ďiďn est une famille génératrice de Kn. En effet, pour tout px1, . . . , xnq P Kn, px1, . . . , xnq “
n
ÿ

i“1

xiei.

Exemple 42 La famille
ˆˆ

1 0
0 0

˙

,

ˆ

0 1
0 0

˙

,

ˆ

0 0
1 0

˙

,

ˆ

0 0
0 1

˙˙

engendre M2pKq, puisque, pour tout a, b, c, d P K,

ˆ

a b
c d

˙

“ a

ˆ

1 0
0 0

˙

` b

ˆ

0 1
0 0

˙

` c

ˆ

0 0
1 0

˙

` d

ˆ

0 0
0 1

˙

.

Plus généralement, pour tout n, p P N˚, i P J1 , nK et j P J1 , pK, notons Ei,j la matrice élémentaire de Mn,ppKq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1. La famille pEi,jq1ďiďn

1ďjďp
est alors génératrice de

Mn,ppKq, puisque, pour tout A P Mn,ppKq, A “
ÿ

1ďiďn
1ďjďp

ai,jEi,j .

Pouvez-vous donner une famille génératrice de SnpRq, l’ensemble des matrices symétriques, puis de AnpRq, l’ensemble
des matrices antisymétriques ?
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Exemple 43 La famille p1, iq engendre le R-espace vectoriel C, mais p1q suffit à engendrer le C-espace vectoriel C.

Le théorème qui suit n’est qu’une simple reformulation du théorème 37 de propriétés des Vect.

Proposition 44 - Propriétés des parties génératrices. Soit E un K-espace vectoriel, X et Y deux parties finies
de E.
(i) Inclusion. Si X engendre E et X Ă Y , alors Y engendre E.

(Toute « sur-famille » d’une famille génératrice est génératrice.)
(ii) Oter un vecteur. Si X engendre E et si x P VectpXz txuq, alors Xz txu engendre E.
(iii) Remplacer un vecteur. Si X Ytau engendre E et si b est combinaison linéaire de X Ytau avec un coefficient

non nul sur a, alors X Y tbu engendre E.

. En pratique . Trouver une partie génératrice d’un sous-espace vectoriel revient à l’écrire comme un Vect.

Exemple 45 L’ensemble E “
 

px, y, z, tq P R4
ˇ

ˇ x` 2y ´ z “ 0 et x´ y ` t “ 0
(

est un sous-espace vectoriel de R4

engendré par la famille pp1, 0, 1,´1q, p0, 1, 2, 1qq.

En effet, pour tout px, y, z, tq P R4, px, y, z, tq P E ðñ

"

z “ x ` 2y
t “ ´x ` y

,

ainsi E “ tpx, y, x` 2y,´x` yqux,yPR “ txp1, 0, 1,´1q ` yp0, 1, 2, 1qux,yPR “ Vect pp1, 0, 1,´1q, p0, 1, 2, 1qq.
Ceci montre simultanément que E est un sous-espace vectoriel de R4 et que pp1, 0, 1,´1q, p0, 1, 2, 1qq engendre E.

Exemple 46 L’ensemble F “ tP P R3rXs | 2P pX ` 1q “ XP 1u est un sous-espace vectoriel de R3rXs engendré par
X2 ´ 4X ` 3.
En effet, pour tout P “ aX3 ` bX2 ` cX ` d P R3rXs,

P P F ðñ 2P pX ` 1q “ XP 1 ðñ 2apX ` 1q3 ` 2bpX ` 1q2 ` 2cpX ` 1q ` 2d “ X
`

3aX2 ` 2bX ` c
˘

ðñ

$

’

’

&

’

’

%

2a “ 3a
6a` 2b “ 2b

6a` 4b` 2c “ c
2a` 2b` 2c` 2d “ 0

ðñ

$

&

%

a “ 0
4b` c “ 0

b` c` d “ 0
ðñ

$

&

%

a “ 0
c “ ´4b
d “ 3b.

Ainsi F “
 

bX2 ´ 4bX ` 3b
(

bPR “
 

b
`

X2 ´ 4X ` 3
˘(

bPR “ Vect
`

X2 ´ 4X ` 3
˘

.
Ceci montre simultanément que F est un sous-espace vectoriel de R3rXs et que

`

X2 ´ 4X ` 3
˘

engendre F .

2.2 Parties et familles libres ou liées

Définition 47 - Partie/famille libre d’un nombre fini de vecteurs. Soit E un K-espace vectoriel et px1, . . . , xnq
une famille de E. Cette famille est dite libre (ou encore les vecteurs x1, . . . , xn sont dits linéairement indépendants)
lorsque :

@ pλiq1ďiďn P K
n,

˜

n
ÿ

i“1

λixi “ 0E ùñ λ1 “ . . . “ λn “ 0

¸

.

Remarque 48 - Identification des coefficients pour une famille libre. De manière équivalente, une famille px1, . . . , xnq
est libre lorsque :

@ pλiq1ďiďn , pµiq1ďiďn P K
n,

˜

n
ÿ

i“1

λixi “
n
ÿ

i“1

µixi ùñ @i P J1 , nK , λi “ µi

¸

,
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En résumé :

Famille génératrice = Existence pour tout vecteur d’une décomposition comme combinaison linéaire.

Famille libre = Unicité des coefficients dans les combinaisons linéaires,
ce qui autorise les identifications.

Définition 49 - Partie/famille liée d’un nombre fini de vecteurs, couple de vecteurs colinéaires.
Soit E un K-espace vectoriel.

• Soit x1, . . . , xn P E. La partie txiu1ďiďn ou la famille pxiq1ďiďn est dite liée ou les vecteurs x1, . . . , xn sont
dits linéairement dépendants lorsque la famille pxiq1ďiďn n’est pas libre. Ceci équivaut à ce qu’au moins un
des vecteurs x1, . . . , xn soit combinaison linéaire des autres.

• Soit x, y P E. Les vecteurs x et y sont dits colinéaires lorsque la paire tx, yu est liée, i.e. lorsque x ou y est
un multiple de l’autre.

Dire que txiu1ďiďn est liée revient à dire qu’il existe λ1, . . . , λn P K tels que

˜

n
ÿ

i“1

λixi “ 0E et Di0 P J1 , nK , λi0 ‰ 0

¸

,

auquel cas xi0 “ ´
1

λi0

ÿ

1ďiďn
i‰i0

λixi, i.e. xi0 est « combinaison linéaire des autres xi ».

Exemple 50 - Des vecteurs de R3. Montrer que la famille pp2, 1, 2q, p1, 0, 2q, p0, 1, 1qq est libre dans R3. Et
pp2, 1, 2q, p1, 0, 2q, p0, 1, 1q, p8, 4, 11qq ?

Les trois famille suivantes sont libres quasiment par définition :

Exemple 51 Soit n P N˚. Posons e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, ..., en “ p0, . . . , 0, 1q. La famille peiq1ďiďn
est libre dans Kn – principe d’identification des coefficients d’une famille de scalaires.

En effet, pour tout pλ1, . . . , λnq P Kn,
n
ÿ

i“1

λiei “ pλ1, . . . , λnq, ainsi l’égalité
n
ÿ

i“1

λiei “ p0, . . . , 0q implique directe-

ment λ1 “ . . . “ λn “ 0.

Exemple 52 Pour tout n P N, la famille p1, X, . . . ,Xnq est libre dans KnrXs – principe d’identification des
coefficients d’un polynôme.

Exemple 53 Soit n, p P N˚. Notons, pour tout i P J1 , nK et j P J1 , pK, Ei,j la matrice élémentaire de Mn,ppRq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1. La famille pEi,jq1ďiďn

1ďjďp
est alors libre dans Mn,ppRq

– principe d’identification des coefficients d’une matrice.

Exemple 54 Toute partie/famille de vecteurs qui contient le vecteur nul est liée.
En effet, le vecteur nul est combinaison linéaire – à coefficients tous nuls - de n’importe quelle famille de vecteurs.

Exemple 55 - Famille formée d’un vecteur. Toute partie famille formée d’un seul vecteur est libre si et seulement
si le vecteur est non nul.

Exemple 56 - Famille formée de deux vecteurs. Toute partie tx, yu (ou famille px, yq) formée de deux vecteurs est
libre si et seulement si ces vecteurs sont non colinéaires.

Attention ! Cette règle, très pratique, est fausse lorsqu’on a plus de deux vecteurs ! Ainsi, la famille de
R2 suivante : pp1, 1q, p1, 0q, p0, 1qq est liée sans qu’aucun des vecteurs ne soient colinéaires à un autre.
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Exemple 57 La famille p1, iq est libre dans le R-espace vectoriel C – principe d’identification des parties
réelle et imaginaire – mais liée dans le C-espace vectoriel C.
En effet, la famille est liée sur C puisque i “ iˆ 1.

Définition-Proposition 58 - Famille de polynômes échelonnée en degré.
Toute famille pP1, . . . , Pnq de polynômes non nuls de KrXs pour laquelle degP1 ă . . . ă degPn est dite échelonnée
(en degré). Une telle famille est libre.

Le cadre précédent a un analogue naturel dans Kn :

Exemple 59 - Famille échelonnée de vecteurs de Kn.
Soit pu1, . . . , unq une famille de vecteurs non nuls de Kn. Pour tout k P J1 , nK, notons ik l’indice de la première
coordonnée non nulle de uk. La famille pu1, . . . , unq est dite échelonnée lorsque la suite pi1, . . . , inq est strictement
croissante. Le cas échéant, la famille pu1, . . . , unq est libre.

La famille pp1, 0, 2,´1q, p0, 0, 3, 2q, p0, 0, 0,´5qq est une famille échelonnée de vecteurs de R4 et est donc libre.

Exemple 60 La famille pp2, 1q, p´1, 3q, p0, 2qq est liée dans R2.

En effet, pour tout λ, µ, ν P R, λp2, 1q ` µp´1, 3q ` νp0, 2q “ p0, 0q ðñ

"

2λ ´ µ “ 0
λ ` 3µ ` 2ν “ 0

et ce

système possède des solutions pλ, µ, νq autres que p0, 0, 0q, e.g.
`

1, 2,´ 7
2

˘

. Ainsi les vecteurs p2, 1q, p´1, 3q et p0, 2q sont
linéairement dépendants.

Exemple 61 La famille
`

X2 ´X ` 1, X2 `X ´ 2, X2 ´ 2X ` 3
˘

est libre dans RrXs.
En effet, pour tous λ, µ, ν P R, λ

`

X2 ´X ` 1
˘

` µ
`

X2 `X ´ 2
˘

` ν
`

X2 ´ 2X ` 3
˘

“ 0

ðñ

$

&

%

λ ` µ ` ν “ 0
λ ´ µ ` 2ν “ 0
λ ´ 2µ ` 3ν “ 0

ðñ

$

&

%

λ ` µ ` ν “ 0
2µ ´ ν “ 0 L2 Ð L1 ´ L2

3µ ´ 2ν “ 0 L3 Ð L1 ´ L3

ðñ

$

&

%

λ ` µ ` ν “ 0
2µ ´ ν “ 0
µ “ 0 L3 Ð 2L2 ´ L3

ðñ λ “ µ “ ν “ 0.

Exemple 62 La famille psin, cosq est libre dans RR.
En effet, si pour λ, µ P R, λ sin`µ cos “ 0RR , i.e. pour tout x P R : λ sinx ` µ cosx “ 0, alors, en particulier,
λ sin 0` µ cos 0 “ 0 et λ sin

π

2
` µ cos

π

2
“ 0, ce qui entraîne λ “ µ “ 0.

Théorème 63 - Propriétés des parties libres/liées.
Soit E un K-espace vectoriel et X et Y deux parties finies de E.
(i) Inclusion. Si Y est libre et si X Ă Y , alors X est libre.

Par contraposition, si X est liée et si X Ă Y , alors Y est liée.
(Toute « sous-famille » d’une famille libre est libre / Toute « sur-famille » d’une famille liée est liée.)

(ii) Ajout d’un vecteur. Si X est libre, alors

X Y tyu est libre ðñ y R VectX.

Démonstration.
(i) Si X est liée et si X Ă Y , alors l’un des vecteurs de X est combinaison linéaire des autres vecteurs de X et donc

a fortiori l’un des vecteurs de Y est combinaison linéaire des autres.
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(ii) Le sens direct est clair. Réciproquement, supposons X “ pxiq1ďiďn libre et donnons-nous y P E non combinaison

linéaire de X. Pour montrer que XYtyu est libre, donnons-nous pλiq1ďiďn P Kn et µ P K tels que
n
ÿ

i“1

λixi`µy “

0E . Si µ ‰ 0, alors y “ ´
1

µ

n
ÿ

i“1

λixi, ce qui est exclu par hypothèse. Ainsi,
n
ÿ

i“1

λixi “ 0E et la liberté de X assure

que λi “ 0, pour tout 1 ď i ď n.
�

Dire qu’une famille est libre revient à dire qu’aucun de ses vecteurs n’est combinaison linéaire des autres. Ainsi,
si l’on veut que l’ajout d’un vecteur conserve la liberté d’une famille libre, il est nécessaire de ne pas introduire de
dépendance entre ses vecteurs, autrement dit veiller à n’ajouter que des vecteurs linéairement indépendants de ceux
déjà présents.

2.3 Bases

Définition 64 - Base. Une famille B est une base de E lorsque B est une famille libre et génératrice de E

La résultat suivant est évident mais très important :

Définition-théorème 65 - Coefficients dans une base. Une famille B “ pe1, . . . , enq est une base de E si et
seulement si tout vecteur de E s’écrit d’une unique façon comme une combinaison linéaire de B, autrement dit :

@x P E, D!pxiq1ďiďn P Kn, x “
n
ÿ

i“1

xiei.

La famille de scalaires pxiq1ďiďn P Kn est appelée la famille des coordonnées de x dans B.

Les bases sont toujours des familles et non des ensembles.

Le résultat suivant est une synthèse des exemples précédents (cf. exemples 41 à 42 et 51 à 53).

Théorème 66 - Bases canoniques de Kn, KnrXs et Mn,ppKq.
• Familles de scalaires. Pour tout n P N˚, on pose

e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, ..., en “ p0, . . . , 0, 1q.

La famille peiq1ďiďn est une base de Kn – dite base canonique.
• Polynômes. Pour tout n P N˚, la famille

`

Xk
˘

0ďkďn
est une base de KnrXs – dite base canonique.

• Matrices. Pour tout n, p P N˚, on note, pour tout i P J1 , nK et j P J1 , pK, Ei,j la matrice de Mn,ppKq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1. La famille pEi,jq1ďiďn

1ďjďp
est une base de

Mn,ppKq – dite base canonique.

Le qualificatif « canonique » doit être compris au sens de « la plus naturelle ». On veillera à ne pas l’utiliser à tort
et à travers ! De fait, les bases exhibées ci-dessus sont les plus naturelles, les plus faciles d’emploi auxquelles on peut
penser dans Kn, KnrXs et Mn,ppKq.

• Pour tout px1, . . . , xnq P Kn les coordonnées de px1, . . . , xnq dans la base canonique sont... ce vecteur lui-même !
On peut difficilement faire plus simple.

• Pour tout P “
n
ÿ

k“0

akX
k P KnrXs, la famille des coordonnées de P dans la base canonique est la famille pakq0ďkďn

de ses coefficients.
• Pour tout A P Mn,ppKq, la famille de coordonnées de A dans la base canonique est paijq1ďiďn

1ďjďp
... i.e. A elle-même.
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Exemple 67 La famille pp1, 1q, p1,´2qq est une base de R2.
En effet, soit px, yq P R2.

• Nous voulons établir « D!pa, bq P R2, px, yq “ ap1, 1q ` bp1,´2q ». Or, pour tout pa, bq P R2,

px, yq “ ap1, 1q ` bp1,´2q ðñ

"

a ` b “ x
a ´ 2b “ y

ðñ

"

a ` b “ x
3b “ x´ y L2 Ð L1 ´ L2

et, étant triangulaire à coefficients diagonaux non nuls, le système obtenu possède une et une seule solution.
• Si l’on veut en outre connaitre les coordonnées du vecteur px, yq dans la base pp1, 1q, p1,´2qq, il ne reste qu’à

achever la résolution du système précédent. Tous calculs faits, ses coordonnées sont pa, bq “
ˆ

2x` y

3
,
x´ y

3

˙

.

Exemple 68 Montrer que la famille B “ pp1, 1, 1q, p1, 2, 3q, p2, 4,´1qq est une base de R3. Soit x P R3 dont les
coordonnées dans la base canonique sont p3, 1, 20q. Quelles sont ses coordonnées dans la base B ?

Exercice 69 La famille
`

X2 `X,X2 ` 1, X ` 1
˘

est une base de R2rXs.
En effet, plutôt que de montrer en deux temps le caractère libre et générateur de ladite famille, procédons plus
efficacement en établissant que tout polynôme de degré inférieur ou égal à 2 est combinaison linéaire d’une unique
façon de X2 `X,X2 ` 1 et X ` 1 :

@P P R2rXs, D!pλ, µ, νq P R3, P “ λ
`

X2 `X
˘

` µ
`

X2 ` 1
˘

` νpX ` 1q.

Soit P “ aX2 ` bX ` c P R2rXs. Pour tous λ, µ, ν P R,

P “ λ
`

X2 `X
˘

` µ
`

X2 ` 1
˘

` νpX ` 1q ðñ

$

&

%

λ ` µ “ a
λ ` ν “ b

µ ` ν “ c
après identification

ðñ

$

&

%

λ ` µ “ a
µ ´ ν “ a´ b L2 Ð L1 ´ L2

µ ` ν “ c
ðñ

$

’

&

’

%

λ ` µ “ a
µ ´ ν “ a´ b

ν “
´a` b` c

2
L3 Ð

1
2L3 ´

1
2L2.

Le système est donc triangulaire à coefficients diagonaux non nuls et admet donc une unique solution.

. En pratique . Pour déterminer une base d’un espace vectoriel, on en cherche initialement une famille génératrice
en écrivant celui-ci comme un Vect, puis on essaie d’établir que la famille obtenue est libre.

Exemple 70 La famille pp2, 1, 1qq est une base du sous-espace vectoriel A de R3 défini par
"

2x ´ y ´ 3z “ 0
3x ´ 2y ´ 4z “ 0.

En effet, On résout le système
"

2x ´ y ´ 3z “ 0
3x ´ 2y ´ 4z “ 0.

ðñ

"

x “ 2z
y “ z.

Ainsi A “ tp2z, z, zq | z P Ru “ Vect pp2, 1, 1qq.

Exercice 71 On rappelle qu’étant donnée une matriceM , sa trace trpMq est la somme de ses coefficients diagonaux.
Alors, l’ensemble F des matrices M P M2pRq telles que MT “M ` trpMqI2 est un sous-espace vectoriel de M2pRq de

base
ˆˆ

1 0
0 ´1

˙

,

ˆ

0 1
1 0

˙˙

.

En effet, Déterminons de façon autonome une telle base.

• Pour tout A “
ˆ

a b
c d

˙

P M2pRq, A P F ðñ

ˆ

a c
b d

˙

“

ˆ

a b
c d

˙

`pa`dq

ˆ

1 0
0 1

˙

ðñ d “ ´a et c “ b.

Ainsi F “
"ˆ

a b
b ´a

˙*

a,bPR
“ Vect

ˆˆ

1 0
0 ´1

˙

,

ˆ

0 1
1 0

˙˙

et en particulier, F est un sous-espace vectoriel de

M2pRq.

• Il nous reste à vérifier que la famille
ˆˆ

1 0
0 ´1

˙

,

ˆ

0 1
1 0

˙˙

est libre. Or, pour tous λ, µ P R, si

λ

ˆˆ

1 0
0 ´1

˙

` µ

ˆ

0 1
1 0

˙˙

“ 0M2pRq, clairement λ “ µ “ 0.
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Exemple 72 (Exemple transverse riche et difficile) Pour tous n P N et λ P K, la famille
´

1, X ´ λ, pX ´ λq
2
, . . . , pX ´ λq

n
¯

est une base de KnrXs et les coordonnées d’un polynôme P P KnrXs dans cette

base sont
ˆ

P pλq, P 1pλq,
P 2pλq

2
, . . . ,

P pnqpλq

n!

˙

.

En effet,
• Pour la liberté :

‹ Méthode 1. Supposons que
n
ÿ

i“0

ai pX ´ λq
i
“ 0, pour a0, . . . , an P K. Par composition à droite par X `λ,

n
ÿ

i“0

aiX
i “ 0 et aussitôt a0 “ . . . “ an “ 0.

‹ Méthode 2. On peut aussi remarquer que la famille en jeu est échelonnée en degré.

• D’après la formule de Taylor polynomiale, P “

n
ÿ

i“0

P piqpλq

i!
pX ´ λq

i, pour tout P P KnrXs. Ainsi, la famille
´

1, X ´ λ, pX ´ λq
2
, . . . , pX ´ λq

n
¯

engendre KnrXs et la formule donne aussi les coordonnées de P .

3 Somme de deux sous-espaces vectoriels

Définition 73 - Somme de deux espaces vectoriels. Soient F et G deux sous-espaces vectoriels d’un K espace
vectoriel E. On appelle somme de F et G le sous-ensemble de E défini comme

F `G “ tx` y, x P F et y P Gu.

C’est un sous-espace vectoriel de E, qui est l’ensemble des combinaisons linéaires d’éléments de F et de G.

Attention ! Ce n’est pas l’addition standard que vous connaissez, mais une nouvelle manière de définir un
ensemble. On éviter les règles de calculs sur ce symbôle `, ou encore de faire la différence de sous-espaces vectoriels

Théorème 74 - Partie génératrice d’une somme de deux sous-espaces vectoriels.
Soient E un K-espace vectoriel, F et G deux sous-espaces vectoriels de E. La somme F `G est aussi le plus petit
sous-espace vectoriel de E contenant F et G, ce qui signifie que tout sous-espace vectoriel de E contenant F et G
contient également F `G. Autrement dit, F `G “ Vect pF YGq.
De plus, soient X et Y deux parties finies de E. Alors

Vect pX Y Y q “ VectpXq `VectpY q.

Autrement dit, si X (resp. Y ) est une partie génératrice de F (resp. de G), alors X Y Y est une partie génératrice
de F `G.

Démonstration. Notons X “ txiu1ďiďm et Y “ tyju1ďjďn. Alors

Vect pX Y Y q “

#

m
ÿ

i“1

λixi `
n
ÿ

j“1

µjyj

ˇ

ˇ

ˇ

ˇ

ˇ

pλiq1ďiďm P Km et pµjq1ďjďn P Kn
+

“

#

m
ÿ

i“1

λixi

ˇ

ˇ

ˇ

ˇ

ˇ

pλiq1ďiďm P Km
+

`

#

n
ÿ

j“1

µjyj

ˇ

ˇ

ˇ

ˇ

ˇ

pµjq1ďjďn P Kn
+

“ Vect pXq `Vect pY q .

�
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Attention ! Il ne faut pas confondre somme et réunion !
La somme est un sous-espace vectoriel, mais pas la réunion en général
(cf. exercice 15.6).

Exemple 75 E`E “ E, E`t0Eu “ E et t0Eu`t0Eu “ t0Eu.
F

G

F YG

F `G

Exemple 76 Les droites vectorielles F “ Vect pp1, 0, 0qq et G “ Vect pp0, 1, 0qq de R3 ont pour somme le plan
d’équation z “ 0.

En effet, F `G “ tpx, 0, 0quxPR ` tp0, y, 0quyPR
déf.
“ tpx, 0, 0q ` p0, y, 0qux,yPR “ tpx, y, 0qux,yPR “ Rˆ Rˆ t0u.

Définition 77 - Somme directe. Soient F et G deux sous-espaces vectoriels d’un K espace vectoriel E. On dit
que la somme F `G est directe lorsque

@u P F `G, D!px, yq P F ˆG, u “ x` y

On note alors F `G “ F
À

G.

Exemple 78 - Une sommes directes. Montrer que dans C, R et iR sont en somme directe.

Proposition 79 - Caractérisation des sommes directes (très utile). Soient F et G deux sous-espaces vectoriels
d’un K-espace vectoriel E. Alors la somme F `G est directe si et seulement si F XG “ t0u.

Exemple 80 Dans K3, le plan F “
 

px, y, zq P K3
ˇ

ˇ x` y ` z “ 0
(

et la droite G “
 

px, y, zq P K3
ˇ

ˇ x “ y “ z
(

sont en somme directe.
En effet, on montre sans difficulté que F et G sont deux sous-espaces vectoriels de E (en les écrivant par exemple comme des
Vect). En outre, soit px, y, zq P F X G, alors x ` y ` z “ 0 et x “ y “ z, donc x “ y “ z “ 0, i.e. px, y, zq “ p0, 0, 0q. Ainsi
F XG “ t0K3u.

Exemple 81 - Encore des sommes directes.
1. Dans R3, les sous espaces F “ Vectpp2, 1, 2q, p1, 0, 2qq et G “ Vectpp6,´1, 0qq sont-ils en somme directe dans R3 ?

Et Vectpp1, 1, 0q, p0, 0, 1qq et Vectpp1, 1, 1qq ?
2. Et les sous-espaces de R4 suivants : F “ Vectpp1, 1, 1, 2q, p1, 2, 3, 1qq et G “ Vectpp2, 0, 4, 1qq ?

Définition 82 - Espaces supplémentaires. Soient F et G deux sous-espaces vectoriels d’un K-espace vectoriel E.
On dit que F et G sont supplémentaire dans E lorsque

E “ F
à

G.

De manière équivalente :
@u P E, D!px, yq P F ˆG, u “ x` y.

Cette définition est en fait assez proche de la notion de base, mais avec deux sous-espaces vectoriels à la place
d’une famille de vecteurs. Noter que cette écriture indique deux choses la somme est directe, et vaut E entier.
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Exemple 83 - Des supplémentaires.
1. Reprendre les exemples précédents et dire si les sommes sont supplémentaires dans l’espace vectoriels de chaque

exemple.
2. Notons E “ C 0pRq l’ensemble des fonctions continues de R dans R, ainsi que F et G les sous-ensembles des

fonctions de E qui sont paires et impaires, respectivement. Montrer que F et G sont des sous-espaces vectoriels
de E, et qu’ils sont supplémentaires dans E.

3. Soit F “ tpx, y, zq P R3, 2x´ y`3z “ 0u. Montrer que F est un sous-espace vectoriel de R3, en donner une base.
Donner un supplémentaire de F dans R3.

4. Soit F “ tP P R2rXs, P p1q “ 0u. Mêmes questions que ci-dessus mais dans l’espace vectoriel R2rXs.

Attention !
• Il ne faut pas confondre les notions de « supplémentaire dans E » et de « somme directe ». Dire que F et G sont
en somme directe revient à affirmer que tout vecteur de E admet au plus une décomposition comme somme
d’un vecteur de F et d’un vecteur de G. Dire que F et G sont supplémentaires dans E revient à affirmer en plus
que E “ F ` G et donc que tout vecteur de E admet exactement une décomposition comme somme d’un
vecteur de F et d’un vecteur de G.

• Un sous-espace vectoriel possède-t-il toujours un supplémentaire ? Oui, toutefois nous le démontrerons seulement
en dimension finie (dans le chapitre dédié à la dimension).

• Il est interdit de parler « du » supplémentaire d’un sous-espace vectoriel en général, faute d’unicité (cf. exemples
84 et 85 ci-dessous).

• Il ne faut pas non plus confondre la notion vectorielle de « supplémentaire » avec celle ensembliste de « complé-
mentaire ». D’une part, il y a absence d’unicité pour la supplémentarité, alors qu’il y a unicité du complémentaire.
D’autre part, un supplémentaire est un sous-espace vectoriel, tandis que le complémentaire d’un sous-espace vec-
toriel ne contient même pas le vecteur nul.

Exemple 84 Deux droites non confondues passant par p0, 0q sont toujours supplémentaires dans R2.
Si P est un plan de R3 passant par p0, 0, 0q et D une droite de R3 passant par p0, 0, 0q non contenue dans P , alors
P et D sont supplémentaires dans R3.

Exemple 85 La droite Gα “ Vect pp1, α, 1qq est un supplémentaire de F “
 

px, y, zq P R3
ˇ

ˇ x` y ` z “ 0
(

dans R3,
pour tout α ‰ ´2.
En effet, soit α ‰ ´2 et px, y, zq P R3, montrons que px, y, zq s’écrit d’une unique manière comme la somme d’un élément de F
et d’un élément de Gα. Pour tous pa, b, cq P R3 et λ P R,

px, y, zq “ pa, b, cq ` λp1, α, 1q et pa, b, cq P F ðñ

$

’

’

&

’

’

%

a ` λ “ x
b ` αλ “ y

c ` λ “ z
a ` b ` c “ 0

ðñ

$

’

’

&

’

’

%

a ` λ “ x
b ` αλ “ y

c ` λ “ z
p2` αqλ “ x` y ` z L4 Ð L1 ` L2 ` L3 ´ L4

Or α ‰ ´2, ainsi le système est de Cramer (triangulaire de coefficients diagonaux non nuls) et possède comme souhaité une
unique solution. Remarquons que lorsque α “ ´2, on a Gα Ă F , ainsi Gα et F ne sauraient être supplémentaires dans R3.

Exemple 86 L’ensemble SnpKq des matrices symétriques et l’ensemble AnpKq des matrices antisymétriques sont
supplémentaires dans MnpKq.
En effet, on souhaite établir « @M P MnpKq, D!pS,Aq P SnpKq ˆAnpKq, M “ S `A ». Procédons par analyse-synthèse.

• Analyse. Soit M P MnpKq et pS,Aq P SnpKq ˆ AnpKq tel que M “ S ` A. Alors tM “
tS ` tA “ S ´ A. Ainsi, par

demi-somme et demi-différence, S “
1

2

`

M `
tM

˘

et A “
1

2

`

M ´
tM

˘

. Sous réserve d’existence, il y a donc unicité.

• Synthèse. Soit M P MnpKq. Posons S “
1

2

`

M `
tM

˘

et A “
1

2

`

M ´
tM

˘

. Alors M “ S`A, S P SnpKq et A P AnpKq,
car

tS “
tˆ

1

2

`

M `
tM

˘

˙

“
1

2

´

tM `
t`tM

˘

¯

“
1

2

`tM `M
˘

“ S

et de même tA “ ´A.
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Exemple 87 Pour tout P P KrXs non nul de degré n, KrXs “ PKrXs ‘Kn´1rXs, où PKrXs “ tPQ | Q P KrXsu.
Indication : pour un polynôme A quelconque, comment l’écrire A “ PQ`R avec R P Kn´1rXs ?
En effet, pour tout A P KrXs, d’après le théorème de division euclidienne, il existe un unique couple pQ,Rq P KrXs ˆKn´1rXs

tel que A “ PQ`R.
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