PTSI Espaces vectoriels 2025—2026

Chapitre 13 - Espaces vectoriels

Ce chapitre introduit la structure fondamentale d’espace vectoriel qui forme la base de ’algébre linéaire. Dans tout
ce chapitre K désigne I’'un des ensembles de nombres R ou C.

1 Espaces vectoriels et combinaisons linéaires

1.1 Espaces vectoriels

Définition 1 - Espace vectoriel.  Un K-espace vectoriel ou espace vectoriel sur K est un triplet (E, +,+) ou E
est un ensemble et + et - des lois vérifiant les propriétés suivantes :

e Loi d’addition interne « + » :
(i) (associativité de +) pour tous z,y,z€ E, (x+y)+z=2+ (y +2);
(ii) (commutativité de +) pour tous x,y € E, x+y=y+x;
(iii) (neutralité pour +) il existe un élément de F, noté Og et nommé vecteur nul de E, tel que,

VeeFE, 2+0p=0g+x=x;

(iv) (opposé pour +) pour tout = € E, il existe un élément de E, noté —z et nommé opposé de x, tel que
z+(—z)=(—2z)+z=0g;

e Loi de multiplication externe « - » :
(v) (neutralité mixte) pour tout z € E, 1-x=x;
(vi) (distributivité mizte 1) pour tout z,ye Eet Ae K, A-(z+y)=X-z+ X y;
(vii) (distributivité mizte 2) pour tout z € Eet A, ue K, (A+p)-z=X-z+p-z;
(viii) (associativité mizte) pour tout z € Eet A, p e K, - (u-x) = (Au) - z.

Les éléments d’un espace vectoriel F sont appelés des vecteurs et les éléments de K, qui agissent par l'intermédiaire
de la loi externe - sur ceux de E, des scalaires. La loi + est appelée addition et la loi - multiplication par un scalaire.

Remarque 2 Ce que l'on appellent « lois » sont en réalité des applications de E x E dans E (pour laddition) et
de K x E dans E (pour la multiplication par un scalaire).

Les mathématiciens ont introduit la structure d’espace vectoriel, hermétique au premier abord, car ils ont remarqué
que cette structure est omniprésente en mathématiques. Ainsi, en mener ’étude systématique s’est imposée.

On peut évidemment s’interroger sur l'origine de la terminologie d’« espace vectoriel » et de « vecteurs » dans un
cadre aussi abstrait. La réponse étant que les régles de la définition précédentes sont exactement celles classiquement
vérifiées par les vecteurs usuels du plan et de ’espace. Dorénavant, les vecteurs pourront désigner des objets aussi
divers que des matrices, des fonctions ou des suites, que ’on pourra ainsi s’efforcer de visualiser géométriquement.

Remarque 3

e Un espace vectoriel F est nécessairement non vide, puisqu’il contient toujours le vecteur nul Og.
e On écrit la plupart du temps « Az » en lieu et place de « A-x », pour A\e Ket x € E.

e En géométrie, il est d’usage de noter les vecteurs & avec une fleche. En revanche, on utilise usuellement la
notation plus légére sans fléche pour les vecteurs d’un espace vectoriel. Il faut donc étre vigilant et veiller a ne
pas confondre vecteurs et scalaires.

e Comme le suggére leurs notations, le vecteur nul Og et 'opposé —z d’un vecteur = de E sont UNIQUES. En effet :

* si 0% désigne aussi un élément neutre pour 'addition, alors Og = 0g + 0% = 0% ;
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* si o’ désigne aussi un opposé de x pour +, alors
¥=2"40g=2"4(x+(—2) =@ +2)+(—2) =0 + (—2) = —=.

e De facon générale, I’addition dans E jouit des mémes propriétés que l'addition dans les ensembles classiques de
nombres, e.g. Z, R et C; notamment, la régle de simplification suivante est vérifiée :

Ve,y,ze B, x4+y=z+z = y=2.

Théoréme 4 - Régles de calcul dans un espace vectoriel. Soit E un K-espace vectoriel.
(i) Pour tous z € F et A e K, AMx=0g < A=0 ou z=0g.
(ii) Pour tout z € E, —z=(-1)- x, ou —z est 'opposé de x dans E et —1 'opposé de 1 dans K.
Démonstration.

(i) Pour tous z € F et A € K,
¢ 0-2=(0+0)-2=0-240-x et, aprés simplification, 0 -z = Og.
e \0g =X (0g+0g)=A-0g+ X 0g et, & nouveau par simplification, A - 0g = Og.
1 1 1
e Sid-x=0getA#0,alorsz=1-z= ()\X)\>'I=)\'()\~1‘)=>\'OE=OE.
(ii) Pourtout z e E, o+ (-1)-z=1-2+(-1)-2=(1—-1)-2=0-2 =0g, ainsi —z = (1) - .

¥ ArTENTION ! 8 On veillera a ne pas confondre 0z I'élément nul de I'espace vectoriel E avec 0 'élément nul
de 'ensemble des scalaires K. Og est un vecteur tandis que 0 est un scalaire!

Exemple 5 (K, +, x) est un K-espace vectoriel, la multiplication classique x dans K étant assimilée a la loi externe
&y

n fois
Exemple 6 - Familles de scalaires. L’ensemble K™* = K x ... x K est un K-espace vectoriel, pour tout n € N* muni
des lois
V(z1,...,zn) €K™, Y(y1,...,yn) €K™, (z1,...,20) + (Y1, -3 Yn) = (@1 + Y1, -, Tn + Yn)-
On retrouve ici le cadre des vecteurs du plan avec R? et celui des vecteurs de I’espace avec R3.
Par exemple, (1,4,—3) +2-(0,2,5) = (1,8,7) — les opérations se faisant coordonnées par coordonnées.

Notez que 'exemple précédent est un cas particulier d’un produit cartésien d’espaces vectoriels, mais cet exemple
suffit amplement plutot que de faire un énoncé général.

Exemple 7 - Matrices. Pour tous n,p € N*, (4, ,(K), +, ) est un K-espace vectoriel pour ses lois usuelles d’addition
et de multiplication par un scalaire.

Exemple 8 - Polynémes. On note K[X] ’ensemble des polynomes a coefficients dans K. Alors K[ X] est un K-espace
vectoriel pour ses lois usuelles d’addition et de multiplication par un scalaire. On note K,,[ X] I’ensemble des polyndmes
dont le degré est inférieur ou égal & n. C’est aussi un K-espace vectoriel pour n € N fixé.

Proposition 9 - Espace vectoriel de fonctions. Soit X un ensemble non vide et F un K-espace vectoriel.
L’ensemble EX des fonctions de X dans E, naturellement muni de ses régles d’additions et de multiplication par
un scalaire, est un espace vectoriel.

Les deux exemples suivants tombent dans le cadre de cette proposition :
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Exemple 10 - Fonctions et suites réelles.

e Pour tout intervalle I non vide, I’ensemble R’ des fonctions de I dans R est un R-espace vectoriel pour I’addition
des fonctions et leur multiplication par un réel (il s’agit du théoréme précédent avec X = I et E = R).

e On peut raffiner en montrant que C°(I,R) ou C'(I,R) sont aussi des espaces vectoriels. Nous aurons bientot
des outils pour éviter de vérifier tous les axiomes.

e L’ensemble RN des suites réelles est un R-espace vectoriel pour I'addition des suites et leur multiplication par un
réel (il s’agit du théoréme précédent avec X = N et E = R).

e L’exemple 7 est un aussi un cas particulier de la proposition précédente avec X = [1,n] x [1,p] et E =K.

Exemple 11 Tout C-espace vectoriel est aussi un R-espace vectoriel. En particulier, C est muni d’une structure de
R-espace vectoriel.

En effet, si E est un C-espace vectoriel, A - z est défini pour tous A € C et x € F, donc en particulier pour tout A € R,
ce qui justifie que I’on puisse considérer £ comme un R-espace vectoriel, par restriction de I’ensemble des scalaires.

¥ ArTENTION ! & Nous avons vu une longue liste d’ensembles qui sont des espaces vectoriels. Combien pouvez-
vous en citer 7

Il y a un piége dangereux : il n’y a aucune raison qu'un espace vectoriel quelconque dispose d’un produit interne.
Ainsi, méme si les « vecteurs » ont perdu leur fléche, étant donné un K espace vectoriel quelconque, et z et y deux
éléments de E, on évitera de faire le produit xy, qui n’a aucune raison d’avoir un sens.

Bien entendu, certains espaces vecoriels possédent un produit interne, mais ce sont des cas particuliers souvent différents
les uns des autres.

Exemple 12 Les ensembles suivants du plan sont-ils des espaces vectoriels ?
e L'ensemble C' = {(z,y) € (R?),-1<z<let —1<y<1}
e L’ensemble D = {(z,y) € (R?), zy = 0}.

¢ Une droite de R? ne passant pas par L'origine. Et si elle passe par l’origine ?

1.2 Combinaisons linéaires

Définition 13 - Combinaisons linéaires d’un nombre fini de vecteurs.

Soit E un K-espace vectoriel et z1,...,z, € E. On appelle combinaison linéaire des vecteurs x4, ..., T, tout vecteur
n
de E de la forme Z AT = MT1 + ...+ ATy, avee Ap, ..., A, € K (les coefficients de la combinaison linéaire).
k=1

Les espaces vectoriels sont congus pour pouvoir réaliser des combinaisons linéaires (mélanges
d’additions et de multiplications par des scalaires).

Cette notion se congoit geometrlquement trés simplement dans le plan ou l'espace. Sur la figure
ci-contre, 4 est combinaison linéaire de 4 et j, mais ce n ‘est pas le cas de ¥. Par contre, dans ’espace,
tout vecteur est combinaison linéaire de z jet k.

¥ ArTEnTION ! 8 Péché d’identification.

n n
En général : Z ATy = Z prry & Ap = g, pour tout k € [1,n].
k= k=1

Par exemple :  (1,1) +2(0,1) +2(1,0) = (3,3) = 2(1,1) + (0,1) + (1,0).

N. Popoff - Lycée les Eucalyptus 3


https://http://www.nicolaspopoff.fr/
https://www.lycee-eucalyptus.fr/

PTSI Espaces vectoriels 2025—2026

Exemple 14 Dans R?, montrer que (2,7) est combinaison linéaire des vecteurs (5, —2) et (1, —3)
En effet,

(2,7) est combinaison linéaire de (5,—2) et (1,-3) <« I\ peR, (2,7) = A(5,-2) + u(1,-3)

A+ po= 2
=2\ — 3u =

\
~

— J\ueR, {

Nous sommes ainsi ramené & la résolution d’un systéme linéaire. Or, pour tout (\, i) € R? :

{5/\+,u

=2\ — 3u =

2 SA 4+ po= 2 B o
7T {13)\ T3 Ly lyesn, = A=l e pu=-3

Ainsi, le systéme étudié posséde des solutions, comme souhaité.
Exemple 15 Dans R3, montrer que tout vecteur est combinaison linéaire des vecteurs (1,2,3), (2,5,6) et (1,5,4).

Exemple 16 Dans .#>(R), <_21 g) n’est pas combinaison linéaire des vecteurs ((1) 1), (_32 ;) et (11 ?)

-1 2 .. ., 11 -2 1 1 0
En effet, ( 9 O) est combinaison linéaire de (O ), ( 3 2) et (_1 1)

S cr (L2 (Y, (2 N, (L0
HY2E% Lo o) T% 0o o) Y3 2) 7\ 11

T -2y +z= -1

T+ y = 2

— dx,y,z€eR, By — 2 — 2
2y + z = 0.

Nous sommes ainsi ramené & la résolution d’un systéme linéaire. Or, pour tout (z,y, z) € R? :

T -2y +z= -1 T -2y +z= -1 T -2y +z= -1
T+ y = 2 3y — 2= 3 Lo<—Ly—14 3y —z= 3
3y — z = 2 3y —z = 2 0= -1 Lsg<« L3— Lo
2y + 2 = 0 20 + 2z = 0 2y + z = 0
Le systéme est donc incompatible, d’ou le résultat.
Exemple 17 Soit n € N. Tout polynome de K,,[X] est combinaison linéaire des polynomes 1, X, X2, ..., X" puisque
n
I’on peut I’écrire Z ap X" pour certains ag, ..., a, € K.

k=0

1.3 Sous-espaces vectoriels

Définition 18 - Sous-espace vectoriel. Soit F un K-espace vectoriel et F' une partie de ¥ STABLE PAR ADDITION
ET PAR MULTIPLICATION PAR UN SCALAIRE. On dit que F' est un sous-espace vectoriel de E lorsque F' est un
K-espace vectoriel pour les lois + et - de F.

Notamment, pour un sous-espace vectoriel F' de F, Op = Og € F' et F est nécessairement une partie non vide de
E. L’égalité 0p = Op résulte de 'unicité de ’élément neutre pour I’addition dans F'.

Exemple 19 - Sous-espaces vectoriels triviaux. Si E est un K-espace vectoriel, {Og} et E sont deux sous-espaces
vectoriels de E — parfois dits ¢riviauz. Notamment {Og} est un K-espace vectoriel — parfois dit trivial.
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Exemple 20 La partie F' = {(x, y) € R? ’ > +xty?= O} n’est pas un sous-espace vectoriel de R2.

En effet, F n’est pas stable par multiplication par un scalaire, puisque (—1,0) € F tandis que (—2,0) = 2(—1,0) ¢ F.
Ni par addition d’ailleurs, puisque (—2,0) = (—1,0) + (—1,0).

Théoréme 21 - Caractérisation des sous-espaces vectoriels.  Soit F un K-espace vectoriel et F' une partie de
E. S’équivalent :

(i) F est un sous-espace vectoriel de E;

(") OE eF )
e [ est stable par combinaison linéaire : VA, ueK, Vz,yeF, x4+ uyeF.

Démonstration.

e (i) = (ii). Si F est un sous-espace vectoriel de E, on a vu que Og = Op € F. De plus, pour tous z,y € F
et \,u € K, A\x et py sont des éléments de F', partie stable de E par multiplication par un scalaire, et enfin
Ax + py € F, car F est stable par addition.

o (i) = (ii). Sil’assertion (ii) est vraie, F' est en particulier stable par addition (pour A = p = 1) et multiplication
par un scalaire (pour y = Og). En outre, pour tout « € F', 'opposé —z de = dans E appartient aussi & F' (pour
A= —1lety=0g). Les autres axiomes de la définition des espaces vectoriels ne requiérent aucune vérification
particuliére puisqu’une relation vraie sur F tout entier 1’est aussi sur F'.

]
Exemple 22 La partie F' = {(x, y) € R? | 2r — 3y = 0} est un sous-espace vectoriel de R2.

% En pratique &
e Pour établir qu’une partie d’un espace vectoriel en est un sous-espace vectoriel, on utilisera TOUJOURS la carac-
térisation précédente, qui évite de vérifier les 8 axiomes de la définition d’'un espace vectoriel !

e Pour montrer qu’un ensemble muni d’une addition et d’une multiplication par un scalaire est un espace vectoriel,
il suffit souvent de montrer qu’il est SOUS-espace d’un autre espace vectoriel connu. D’ou 'importance des espaces
vectoriels classiques donnés en exemple précédemment (exemples et théorémes 5 a 10).

Théoréme 23 - Ensemble des solutions d’un systéme linéaire homogéne.  Soit A € ./%, ,(K).
L’ensemble des solutions du systéme linéaire HOMOGENE AX = 0, d’inconnue X € .4, 1(K), est un sous-espace
vectoriel de ., 1 (K).

En particulier, toute droite de R? PASSANT PAR (0,0) est un sous-espace vectoriel de R?, et toute droite et tout
plan de R3 PASSANT PAR (0,0,0) sont des sous-espaces vectoriels de R3.

Démonstration. Notons S 'ensemble {X € .4, 1(K) | AX = 0,1} des solutions. Clairement S < .#,1(K) et 0,1 € S,
puisque A x 0,1 = 0, 1. Montrons en outre que S est stable par combinaison linéaire : soit A, e Ket X, X' € S,

ADX + NX') = MAX + NAX = A% Opt + N % Opy = Opy,
ainsi A X + M'X' e S. [

Remarque 24 Le théoréme précédent établit ainsi que ’ensemble des solutions d’un systéme linéaire homogéne
de n équations & p inconnues est un sous-espace vectoriel de KP. En effet, un tel systéme équivaut & une équation
matricielle AX = 0, avec A € 4, ,(K), et les éléments de ., 1 (K) s’identifie & ceux de K? par transposition.

Exemple 25 Pour tout n € N* I’ensemble des matrices triangulaires supérieures de taille n & coefficients dans K
est un sous-espace vectoriel de ., (K).

En effet, il s’agit bien d’un sous-ensemble de .7, (K) qui contient la matrice nulle et nous avons déja observé que toute
combinaison linéaire de matrices triangulaires supérieures en est encore une.
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Exemple 26 - Espaces vectoriels K,,[X]. Pour tout n € N, K,[X] est un sous-espace vectoriel de K[X].
En effet, soit ne N, on a

e K,[X] cK[X];

e 0€ K, [X], puisque deg0 = —o0 < n;

e K,,[X] est stable par combinaison linéaire, puisque, pour tous P,Q € K,[X] et \,u € K, deg (AP + p@Q) <
max {deg P, deg Q} < n.

¥ ArTENTION ! % L’ensemble des polynomes de degré EGAL & n N’est PAS un sous-espace vectoriel de K[X] —
il ne contient méme pas le polyndéme nul!

Exemple 27 - Le principe de superposition revisité. L’ensemble des solutions d’une équation différentielle linéaire
homogeéne sur un intervalle non vide est un espace vectoriel

Exemple 28
e L’ensemble des suites réelles convergentes est un sous-espace vectoriel du R-espace vectoriel RN des suites réelles.

o C’est aussi le cas des suites récurrentes linéaires.

Théoréme 29 - Intersections de sous-espaces vectoriels. Soit £ un K-espace vectoriel.
Toute intersection de sous-espaces vectoriels de E est encore un sous-espace vectoriel de E.

Démonstration. Soit I un ensemble non vide et {F;}, ; un ensemble de sous-espaces vectoriels de E. On souhaite
établir que F' = ﬂ F; est un sous-espace vectoriel de E. Or :

e Fc I, el

e Pour tout i € I, Og € Fj;, puisque Fj; est un sous-espace vectoriel de F, ainsi Og € F';

e Soit A\,ue Ket x,y e F. Pour tout i € I, puisque F; est un sous-espace vectoriel de E et x,y € F;, Ax + uy € F;.
Ainsi, Az + puy € F et F est stable par combinaison linéaire.

¥ ArTENTION ! ¥ En revanche, la réunion de deux sous-espaces vectoriels
N’est PAS un sous-espace vectoriel en général — la stabilité par addition n’est clai-
rement pas assurée !

1.4 Sous-espaces vectoriels engendrés par une partie

Définition-Proposition 30 - Sous-espaces vectoriels engendrés par une partie finie. Soit £ un K-espace vectoriel
et X une partie finie de F.

(i) L’ensemble des combinaisons linéaires des éléments de X, noté Vect(X), est un sous-espace vectoriel de F,
appelé le sous-espace vectoriel (de E) engendré par X. Si X = {z;},;,,, on le note aussi Vect(z;)1<i<n et

n
VeCt($i)1<i<n = {Z )\11'1
i=1

()‘i)lsign € Kn} .

(ii) Vect(X) est également le plus petit sous-espace vectoriel de FE contenant X . Cela signifie que Vect(X) contient
X et que tout sous-espace vectoriel de E qui contient X contient aussi Vect(X).
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Démonstration.
(i) Montrons que Vect(X) est un sous-espace vectoriel de E, ot X = {x;},_,;,, :
e Par définition, Vect(X) c E;

n
e Op € Vect(X), puisque O = Z 0-z;;
i=1
e Vect(X) est stable par combinaison linéaire. En effet...

(i) Montrons que Vect(.X) est le plus petit sous-espace vectoriel de E' contenant X, avec X = {;},,;,,- D'une part,

n
on a bien X < Vect(X), puisque, pour tout i € [1,n], z; = Z 0; ;. D’autre part, la stabilité par combinaison
j=1
linéaire implique qu’un sous-espace vectoriel de F qui contient X contient aussi toutes les combinaisons linéaires
de X, i.e. Vect(X).

]
oy Vect(u) v ~u, Vect(u,v) v Vect(u,v)
: - / U
% En pratique &  Pour montrer qu'une partie d’un espace vectoriel en est un sous-espace vectoriel, il suffit souvent
de I’écrire comme un Vect.

A

Exemple 31 Le sous-espace vectoriel Vect ((1,2)) est la droite de R? passant par (0,0) et dirigée par (1,2).
Exemple 32 Pour tout n € N, K, [X] = Vect (1, X,..., X™).

Exemple 33 Le plan & de R? d’équation 2z — y + 3z = 0 passe par le point (0,0,0) et est dirigé par les vecteurs
(1,2,0) et (0,3,1). Montrer que & = Vect ((1,2,0),(0,3,1)).

En effet, & = {(z,22 +32,2)}, g = {(2(1,2,0) + 2(0,3,1)}, _cp = Vect ((1,2,0),(0,3,1)).

Exemple 34 La droite 2 de R? d’équation { 5; i ny ; z i 8 passe par le point (0,0,0) et est dirigée par le
vecteur (1,—2,3). Montrer que Z = Vect ((1,—2,3)).
En effet, pour tout (z,v,2) € R?,

or +y —z =20
=0

% + y — y=-—2xetz=3x.

(:c,y,z) €2 — { Lo «— %Ll + %LQ

Finalement 7 = {(z,2z,32)}, . = {z(1,-2,3)},.g = Vect ((1,-2,3)).

Exemple 35 Dans .#5(R), Vect ((é 8) , (8 é) , (8 (1))) est I’ensemble des matrices triangulaires supérieures

de taille 2 & coefficients réels.

Exemple 36 Si I'ensemble des scalaires est R, Vect(1) = {a x 1}, = R et Vect(1,7) = {a x 1 +b x i}, ,p = C.
En revanche, si 'ensemble des scalaires est C, Vect(1) = {a x 1} .- = C.

Proposition 37 - Propriétés des Vect. Soit £ un K-espace vectoriel, X et Y des parties finies de F et z,a,b € F.

(i) Inclusion. Si X c Y, alors Vect(X) < Vect(Y). En particulier, si F' est un sous-espace vectoriel qui contient
une famille finie (z;)i=1,... n, alors il contient aussi Vect(x;)1<i<n-

(ii) Oter un vecteur. Si z € X est combinaison linéaire des autres éléments de X, i.e. x € Vect(X\ {z}), alors
Vect(X) = Vect (X\ {z}).

(iii) Remplacer un vecteur. Si b est combinaison linéaire de X U {a} avec un coeflicient NON NUL sur a, alors

Vect(X U {a}) = Vect(X v {b}).
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Démonstration.

(i) Toute combinaison linéaire de X est évidemment une combinaison linéaire de Y'!

(ii) Soit # € X tel que x € Vect(X\{z}). D'aprés (i), Vect(X\{z}) < Vect(X). Pour l'inclusion réciproque,
Vect(X\ {z}) est un sous-espace vectoriel contenant X\ {z}, or il contient aussi z par hypothése, donc X et
ainsi Vect(X).

(iii) D’une part, Vect (X U {a}) contient X et a, donc aussi b par hypothése, donc X u{b} et finalement Vect (X u {b}).
D’autre part, remarquons par hypothése que b = Aa + x, avec X € K* et x € Vect(X). Ainsi a = X(b —x) et a est
combinaison linéaire de X U {b} avec un coefficient non nul sur b. Les roles de a et b sont finalement symétriques.

|

% En pratique & Ces régles doivent étre mise en pratique plutdt qu’étre apprises sous la forme de formule abstraites,
voir I’exemple suivant.

Exemple 38 Dans R? :

Vect((1,1,0), (0,1,0), (1,3,0)) = Vect ((1,1,0), (0,1,0)) = Vect ((1,1,0) — (0,1,0), (0,1,0))

Combinaison linéaire

de (1,1,0) et (0,1,0) = Vect ((1,0,0), (0,1,0)) = R? x {0}.

2 Familles de vecteurs

2.1 Parties et familles génératrices

Définition 39 - Partie/famille génératrice (finie).

Soit E un K-espace vectoriel, n € N* et (z1,...,x,) une famille de vecteurs de E.

On dit que la famille (7;)1<i<n (ou la partie {z;},_,, ) est génératrice de E ou engendre E lorsque tout élément
de F est combinaison linéaire des vecteurs de cette famille, i.e. E = Vect(x;)1<i<n-

Exemple 40  Pour tout n € N, la famille (1, X,..., X™) engendre K, [X].

Exemple 41  Pour tout (z,y) € K2, (z,9) = z(1,0) + y(0,1), ainsi ((1,0), (0,1)) est une famille génératrice de K2.
De méme, pour tout (z,y, z) € K3, (z,y,2) = (1,0,0) +y(0, 1,0) + 2(0,0, 1), donc ((1,0,0), (0,1,0), (0,0,1)) engendre
K3. Plus généralement, pour n € N* posons e; = (1,0,...,0), ex = (0,1,0,...,0), ..., e, = (0,...,0,1). La famille

——

(ei)1<i<n est une famille génératrice de K™. En effet, pour tout (x1,...,2,) € K*, (x1,...,2,) = Z ZTi€;.
i=1

. 10 0 1 0 0 0 0 .
Exemple 42 La famille ((O 0) , (O O) , <1 O) , (O 1)) engendre .#5(K), puisque, pour tout a,b,c,d € K,

)=l )0 a) e o) relo )

Plus généralement, pour tout n,p € N* i € [1,n] et j € [1,p], notons E; ; la matrice élémentaire de ., ,(K) dont

tous les coefficients sont nuls sauf celui en position (¢, ), égal & 1. La famille (E; ;)1<i<n est alors génératrice de
1<j<p
My »(K), puisque, pour tout A € 4, ,(K), A = Z a; ; E; ;.

1<i§n
1<j<p

Pouvez-vous donner une famille génératrice de S, (R), 'ensemble des matrices symétriques, puis de A, (R), ’ensemble
des matrices antisymétriques 7
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Exemple 43 La famille (1,7) engendre le R-espace vectoriel C, mais (1) suffit & engendrer le C-espace vectoriel C.

Le théoréme qui suit n’est qu'une simple reformulation du théoréme 37 de propriétés des Vect.

Proposition 44 - Propriétés des parties génératrices. Soit £ un K-espace vectoriel, X et Y deux parties finies
de F.

(i) Inclusion. Si X engendre F et X c Y, alors Y engendre E.
(Toute « sur-famille » d’une famille génératrice est génératrice.)

(i) Oter un vecteur. Si X engendre E et si z € Vect(X\ {x}), alors X\ {z} engendre E.

(iii) Remplacer un vecteur. Si X U {a} engendre FE et si b est combinaison linéaire de X U {a} avec un coefficient
NON NUL sur a, alors X v {b} engendre E.

% En pratique & Trouver une partie génératrice d’un sous-espace vectoriel revient a ’écrire comme un Vect.

Exemple 45 L’ensemble E = {(x, y,z,t) e R4 | r+2y—z=0etz—y+t= 0} est un sous-espace vectoriel de R*
engendré par la famille ((1,0,1,—1),(0,1,2,1)).

z = x + 2y
t=—-x+ vy
ainsi £ = {(z,y,z + 2y, —x + y)h;,ye]R = {z(1,0,1,-1) +y(0,1,2, 1)}x,yeR = Vect ((1,0,1,-1),(0,1,2,1)).

Ceci montre SIMULTANEMENT que E est un sous-espace vectoriel de R* et que ((1,0,1,—1),(0,1,2,1)) engendre E.

En effet, pour tout (z,y,z2,t) € R, (v,y,2,t) e B <

3

Exemple 46  L’ensemble F' = {P € R3[X] | 2P(X + 1) = X P’} est un sous-espace vectoriel de R3[X] engendré par
X2 —4X +3.

En effet, pour tout P = aX3 + bX? + cX + d € R3[X],

PeF <« 2P(X+1)=XP <« 2aX+1)°+20X+1)*+2c(X +1)+2d=X (3aX>+2bX +c)

2a = 3a a = 0 o = 0
— ba+2b = 20 — 4b+c = 0 — c = —4b
6a+4b+2c = ¢ btctd — 0 d — 3
2a+2b+2c+2d = 0 ¢ - -

Ainsi F = {bX? —4bX +3b}, , = {b(X? —4X +3)}, . = Vect (X? —4X +3).
Ceci montre SIMULTANEMENT que F est un sous-espace vectoriel de R3[X] et que (X 24X+ 3) engendre F.

2.2 Parties et familles libres ou liées

Définition 47 - Partie/famille libre d’'un nombre fini de vecteurs. Soit £ un K-espace vectoriel et (x1,...,x,)
une famille de E. Cette famille est dite libre (ou encore les vecteurs z1, . .., z, sont dits linéairement indépendants)
lorsque :
n
V()‘i)lgignEKn’ (2)\1‘.’51‘:05; - )\1=...=)\n=0>.
i=1
Remarque 48 - Identification des coefficients pour une famille libre. De maniére équivalente, une famille (z1, ..., z,)

est libre lorsque :

n n
v (/\i)1<i<n ) (,ui)lgign € Kn’ <Z )\i-ri = Z HiZg = Vie [[1 7nﬂ ) )\l = Mi) )
=1 =1
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En résumé :

FAMILLE GENERATRICE = EXISTENCE pour TOUT vecteur d’une décomposition comme combinaison linéaire.

UNICITE des coefficients dans les combinaisons linéaires,

FAMILLE LIBRE = . .
ce qui autorise les IDENTIFICATIONS.

Définition 49 - Partie/famille liée d’un nombre fini de vecteurs, couple de vecteurs colinéaires.
Soit F un K-espace vectoriel.
e Soit x1,...,2, € E. La partie {z;},_,,, ou la famille (z;),,,, est dite lice ou les vecteurs xy,...,z, sont
dits linéairement dépendants lorsque la famille (z;), ,,, N'est PAS libre. Ceci équivaut a ce qu’AU MOINS UN
des vecteurs x1,...,x, soit combinaison linéaire des autres.

e Soit z,y € E. Les vecteurs z et y sont dits colinéaires lorsque la paire {x,y} est liée, i.e. lorsque x ou y est
un multiple de I'autre.

n
Dire que {z;}, ;,, est liée revient a dire qu'il existe Ay, ..., A, € K tels que (Z XNix; =0 et Jige[l,n], N, # 0) ,

i=1
auquel cas z;, = —— Z Ai;, 1.€e. T;, est « combinaison linéaire des autres z; ».
0 1<i<n
iio
Exemple 50 - Des vecteurs de R>. Montrer que la famille ((2,1,2),(1,0,2),(0,1,1)) est libre dans R?. Et

((2,1,2),(1,0,2),(0,1,1),(8,4,11)) ?
Les trois famille suivantes sont libres quasiment par définition :

Exemple 51  Soit n € N*. Posons e; = (1,0,...,0), e2 = (0,1,0,...,0), ..., e, = (0,...,0,1). La famille (¢e;)1<i<n
est libre dans K™ — principe d’IDENTIFICATION DES COEFFICIENTS D’UNE FAMILLE DE SCALAIRES.

En effet, pour tout (A1,...,A,) € K7, 2 Aiei = (A1,..., An), ainsi Pégalité Z Aie; = (0,...,0) implique directe-
i=1 i=1
ment \y =...= )\, =0.

Exemple 52 Pour tout n € N, la famille (1, X,...,X™) est libre dans K,,[X] — principe d’IDENTIFICATION DES
COEFFICIENTS D’UN POLYNOME.

Exemple 53  Soit n,p € N*. Notons, pour tout ¢ € [1,n] et j € [1,p], E; ; la matrice élémentaire de ., ,(R) dont

tous les coefficients sont nuls sauf celui en position (4, j), égal & 1. La famille (E; ;)1<i<n est alors libre dans ., ,(R)
1<j<p
— principe d’IDENTIFICATION DES COEFFICIENTS D’UNE MATRICE.

Exemple 54 Toute partie/famille de vecteurs qui contient le vecteur nul est liée.

En effet, le vecteur nul est combinaison linéaire — & coefficients tous nuls - de n’importe quelle famille de vecteurs.

Exemple 55 - Famille formée d’un vecteur. Toute partie famille formée d’un seul vecteur est libre si et seulement
si le vecteur est non nul.

Exemple 56 - Famille formée de deux vecteurs. Toute partie {z,y} (ou famille (z,y)) formée de deux vecteurs est
libre si et seulement si ces vecteurs sont non colinéaires.

¥ ArTENTION ! 8 Cette régle, tres pratique, est FAUSSE lorsqu’on a plus de deux vecteurs! Ainsi, la famille de
R? suivante : ((1,1),(1,0),(0,1)) est lide sans qu’aucun des vecteurs ne soient colinéaires & un autre.
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Exemple 57 La famille (1,4) est libre dans le R-espace vectoriel C — principe d’IDENTIFICATION DES PARTIES
REELLE ET IMAGINAIRE — mais liée dans le C-espace vectoriel C.

En effet, la famille est liée sur C puisque i =4 x 1.

Définition-Proposition 58 - Famille de polynémes échelonnée en degré.
Toute famille (P, ..., P,) de polynémes NON NULS de K[X] pour laquelle deg P; < ... < deg P, est dite échelonnée
(en degré). Une telle famille est libre.

Le cadre précédent a un analogue naturel dans K" :

Exemple 59 - Famille échelonnée de vecteurs de K".

Soit (u1,...,u,) une famille de vecteurs NON NULS de K". Pour tout k € [1,n], notons i; 'indice de la premiére
coordonnée non nulle de ug. La famille (ug,...,u,) est dite échelonnée lorsque la suite (iq,...,4,) est strictement
croissante. Le cas échéant, la famille (ug,...,u,) est libre.

La famille ((1,0,2,-1),(0,0,3,2),(0,0,0,—5)) est une famille échelonnée de vecteurs de R?* et est donc libre.

Exemple 60 La famille ((2,1),(—1,3),(0,2)) est liée dans R?.

2N — u =0
A+3u+2v=0
systéme posséde des solutions (A, 1, v) autres que (0,0,0), e.g. (1,2, —1). Ainsi les vecteurs (2,1), (—1,3) et (0,2) sont
linéairement dépendants.

En effet, pour tout A\, pu,v € R, A(2,1) + u(—1,3) + v(0,2) = (0,0) — { et ce

Exemple 61 La famille (X2 —X4+1,X2+X-2,X%2-2X+ 3) est libre dans R[X].
En effet, pour tous )\,u,yeR,/\(XZ—X+1)+u(X2+X72)+1/(X2—2X+3) =0

A+ p + v =0 A+ p + v =0
— A— u +2v =20 — 20 — v =0 Ly« L — Ly
)\—2LL+3V:0 3/L—2V:0 L3<—L1—L3
A+ p +v=0
— 20 —v =20 — A=pu=v=0.
1% =0 L3<—2L2—L3
Exemple 62 La famille (sin, cos) est libre dans R¥.

En effet, si pour A\, € R, Asin+pucos = Ogr, i.e. pour tout x € R : Asinx + pcosx = 0, alors, en particulier,

AsinO+ pcos0=0 et )\sing +ucosg =0, cequientraine A = = 0.

Théoréme 63 - Propriétés des parties libres/liées.
Soit E un K-espace vectoriel et X et Y deux parties finies de E.

(i) Inclusion. SiY est libre et si X < Y, alors X est libre.
Par contraposition, si X est liée et si X < Y, alors Y est liée.
(Toute « sous-famille » d’une famille libre est libre / Toute « sur-famille » d’une famille liée est liée.)

(i) Ajout d’un vecteur. Si X est libre, alors

X u{y} estlibre <= y¢ VectX.

Démonstration.

(i) Si X estliée et si X < Y, alors 'un des vecteurs de X est combinaison linéaire des autres vecteurs de X et donc
a fortiori 'un des vecteurs de Y est combinaison linéaire des autres.
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(i) Le sens direct est clair. Réciproquement, supposons X = (;), ., ,, libre et donnons-nous y € £ NON combinaison

n
linéaire de X. Pour montrer que X U {y} est libre, donnons-nous (A\;)1<i<n € K" et pu € K tels que Z N+ py =

i=1
n

1 n
Opg. Sip#0,alorsy =—— Z Aix;, ce qui est exclu par hypothése. Ainsi, Z Aix; = 0p et la liberté de X assure
i=1 i=1
que \; = 0, pour tout 1 < ¢ < n.

Dire qu’une famille est libre revient & dire qu’aucun de ses vecteurs n’est combinaison linéaire des autres. Ainsi,
si 'on veut que I'ajout d’un vecteur conserve la liberté d’une famille libre, il est nécessaire de ne pas introduire de
dépendance entre ses vecteurs, autrement dit veiller & n’ajouter que des vecteurs linéairement indépendants de ceux
déja présents.

2.3 Bases

Définition 64 - Base. Une famille & est une base de E lorsque £ est une famille libre et génératrice de E

La résultat suivant est évident mais trés important :

Définition-théoréme 65 - Coefficients dans une base. Une famille 8 = (eq,...,e,) est une base de E si et
seulement si tout vecteur de F s’écrit d’une unique fagon comme une combinaison linéaire de A, autrement dit :

n
Vx € E, Hl(mi)léién € Kn, T = Z T;i€i.
=1

La famille de scalaires (z;)1<i<n € K" est appelée la famille des coordonnées de x dans 2.

Les bases sont toujours des FAMILLES et non des ensembles.

Le résultat suivant est une synthése des exemples précédents (cf. exemples 41 a 42 et 51 a 53).

Théoréme 66 - Bases canoniques de K", K,,[X] et ., ,(K).

e Familles de scalaires. Pour tout n € N* on pose
er =(1,0,...,0), e =1(0,1,0,...,0), .., e,=1(0,...,0,1).

La famille (e;)1<i<n est une base de K™ — dite base canonique.

e Polyndmes. Pour tout n € N* | la famille (Xk) est une base de K, [X] — dite base canonique.

0<k<n
e Matrices. Pour tout n,p € N*, on note, pour tout i € [1,n] et j € [1,p], E; ; la matrice de ., ,(K) dont

tous les coefficients sont nuls sauf celui en position (7,7), égal a 1. La famille (E; ;)i1<i<n est une base de
1<jy<p

M, »(K) — dite base canonique.

Le qualificatif « canonique » doit étre compris au sens de « la plus naturelle ». On veillera & ne pas 'utiliser & tort
et & travers! De fait, les bases exhibées ci-dessus sont les plus naturelles, les plus faciles d’emploi auxquelles on peut
penser dans K", K,,[X] et 4, ,(K).

e Pour tout (z1,...,2,) € K" les coordonnées de (z1,...,x,) dans la base canonique sont... ce vecteur lui-méme!
On peut difficilement faire plus simple.

e Pour tout P = Z aka € K, [X], la famille des coordonnées de P dans la base canonique est la famille (ax)o<k<n

k=0
de ses coefficients.

e Pour tout A € 4, ,(K), la famille de coordonnées de A dans la base canonique est (a;;) . i.e. A elle-méme.

1<igsn--
1<j<

N. Popoff - Lycée les Eucalyptus 12


https://http://www.nicolaspopoff.fr/
https://www.lycee-eucalyptus.fr/

PTSI Espaces vectoriels 2025—2026

Exemple 67 La famille ((1,1), (1,—2)) est une base de R?.
En effet, soit (z,y) € R
e Nous voulons établir « 3!(a,b) € R?, (x,y) = a(1,1) + b(1,—2) ». Or, pour tout (a,b) € R?

= x

r—y Ly L —1Ly

a+ b ==x a+ b
N R I R B Sl A

et, étant triangulaire & coeflicients diagonaux non nuls, le systéme obtenu posséde une et une seule solution.

e Si lon veut en outre connaitre les coordonnées du vecteur (z,y) dans la base ((1,1), (1,—2)), il ne reste qu’a

9 _
achever la résolution du systéme précédent. Tous calculs faits, ses coordonnées sont (a,b) = 3:;— y, z 3 y)
Exemple 68 Montrer que la famille B = ((1,1,1),(1,2,3),(2,4,—1)) est une base de R3. Soit z € R3 dont les

coordonnées dans la base canonique sont (3,1, 20). Quelles sont ses coordonnees dans la base B7

Exercice 69 La famille (X? + X, X? + 1, X + 1) est une base de Ry[X].

En effet, plutét que de montrer en deux temps le caractére libre et générateur de ladite famille, procédons plus
efficacement en établissant que tout polynéme de degré inférieur ou égal a 2 est combinaison linéaire d’une unique
faconde X2+ X, X2 +1et X +1:

VPeRy[X], 3\ pv)eR?, P=XA(X"+X)+p(X*+1)+v(X+1).

Soit P = aX? +bX + ce€ Ry[X]. Pour tous \, u, v € R,

A+ =a
P=X(X+X)+p(X?+1)+v(X+1) < A + v = b  aprés identification
n+ v =-c
A+ op = - ab
— W —v=a->bt LgeLl Lo — - a—
—a+b
‘LL+I/: :y LgH%LgféLQ.

Le systéme est donc triangulaire & coefficients diagonaux non nuls et admet donc une unique solution.

% En pratique &  Pour déterminer une base d’un espace vectoriel, on en cherche initialement une famille génératrice
en écrivant celui-ci comme un Vect, puis on essaie d’établir que la famille obtenue est libre.

20 — y — 32 =10

Exemple 70  La famille ((2,1,1)) est une base du sous-espace vectoriel A de R? défini par { 30 — 2y — 4z

I
e

En effet, On résout le systéme

3z — 2y — 4z = 0. Y=z
Ainsi A = {(2z,2,2) | z€ R} = Vect ((2,1,1)).

{2xy3z=0 {$=22
<

Exercice 71  On rappelle qu’étant donnée une matrice M, sa trace tr(M) est la somme de ses coefficients diagonaux.
Alors, 'ensemble F des matrices M € .#5(R) telles que M7 = M + tr(M)I, est un sous-espace vectoriel de .Z(R) de

e (34

En effet, Déterminons de facon autonome une telle base.

a b a c a b 10
oPourtoutA—<C d)E%Q(R)7 AeF (b d>_(c d)+(a+d)<0 1) <> d=—a et c=0b.

Ainsi F = {(Z b )} = Vect ((é 01> , <(1) é)) et en particulier, F' est un sous-espace vectoriel de
4/ ) aper -
Mo(R).

e Il nous reste a vérifier que la famille <<(1) _01>,((1) (1))> est libre. Or, pour tous A\, up € R, si

A (((1) _01> T p <(1) é)) = 0.4,(r), clairement A = p = 0.

N. Popoff - Lycée les Eucalyptus 13



https://http://www.nicolaspopoff.fr/
https://www.lycee-eucalyptus.fr/

PTSI Espaces vectoriels 2025—2026

Exemple 72 (Exemple transverse riche et difficile) Pour tous n € N et A e K, la famille
(1,X “NX =N (X - )\)") est une base de K,,[X] et les coordonnées d'un polynoéme P € K,[X] dans cette

PN P(”)(A))

B g ey ol

base sont (P()\), P'()N),

En effet,

e Pour la liberté :

n
* Méthode 1. Supposons que Z a; (X — )" =0, pour ag,...,a, € K. Par composition & droite par X + X,

i=0

ZaiXi =0 et aussitot ag = ... =a, = 0.

i=0
» Méthode 2. On peut aussi remarquer que la famille en jeu est échelonnée en degré.
S : & PO(N) o .

e D’aprés la formule de Taylor polynomiale, P = Z 5 (X — /\) pour tout P € K, [X]. Ainsi, la famille
1!
i=0

(1, X-)\N(X -2, (X - A)") engendre K, [X] et la formule donne aussi les coordonnées de P.

3 Somme de deux sous-espaces vectoriels

Définition 73 - Somme de deux espaces vectoriels. Soient F' et G deux sous-espaces vectoriels d'un K espace
vectoriel E. On appelle somme de F' et G le sous-ensemble de E défini comme

F+G={zx+y,xzeFetyeG}

C’est un sous-espace vectoriel de F, qui est ’ensemble des combinaisons linéaires d’éléments de F' et de G.

¥ ArTENTION ! 8  Ce n’est pas I'addition standard que vous connaissez, mais une nouvelle maniére de définir un
ensemble. On éviter les régles de calculs sur ce symboéle +, ou encore de faire la différence de sous-espaces vectoriels

Théoréme 74 - Partie génératrice d’'une somme de deux sous-espaces vectoriels.

Soient E un K-espace vectoriel, F' et G deux sous-espaces vectoriels de E. La somme F' + G est aussi le plus petit
sous-espace vectoriel de E/ contenant F' et G, ce qui signifie que tout sous-espace vectoriel de E' contenant F' et G
contient également F' + G. Autrement dit, F' + G = Vect (F U G).

De plus, soient X et Y deux parties finies de E. Alors

Vect (X UY) = Vect(X) + Vect(Y).

Autrement dit, si X (resp. V') est une partie génératrice de F' (resp. de G), alors X u'Y est une partie génératrice
de F' + G.

Démonstration. Notons X = {xi},,,, et Y = {y;}, <, Alors
Z HiYj
(Ai)icicm € Km} {Z H5Ysi

= Vect (X) + Vect (V).

Vect (X W) Y) 1<1<m € Km et (luj)lgjgn € Kn}

I
—

AiT; (15) 1<j<n Kn}

It
S
I
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G
¥ ArreEnTION ! & 1l ne faut pas confondre SOMME et REUNION !
La somme est un sous-espace vectoriel, mais pas la réunion en général
(cf. exercice 15.6).
F
Exemple 75 FE+E=F, E+{0g}=F et {0g}+{0g}={0g}.
Exemple 76 Les droites vectorielles F' = Vect ((1,0,0)) et G = Vect ((0,1,0)) de R ont pour somme le plan

d’équation z = 0.
Eneffet, F+G ={(z,0,0)},c +{(0,4,0)},cx & {(2,0,0) + (0,5,0)}, e = {(z,4,0)}, ,er = R x R x {0}.

Définition 77 - Somme directe. Soient F' et G deux sous-espaces vectoriels d’un K espace vectoriel E. On dit
que la somme I + G est directe lorsque

Vue F+G, N z,y)eFxG, u=z+y

On note alors F' + G = FPG.

Exemple 78 - Une sommes directes. Montrer que dans C, R et iR sont en somme directe.

Proposition 79 - Caractérisation des sommes directes (trés utile). Soient F' et G deux sous-espaces vectoriels
d’un K-espace vectoriel E. Alors la somme F' + G est directe si et seulement si F' n G = {0}.

Exemple 80 Dans K3, le plan F = {(z,y,2) € K® | x + y + z = 0} et la droite G = {(z,y,2) e K |z =y = 2}
sont en somme directe.

En effet, on montre sans difficulté que F' et G sont deux sous-espaces vectoriels de E (en les écrivant par exemple comme des
Vect). En outre, soit (z,y,2) € FnG,alorsz+y+z=0etz =y =2 doncz =y =2 =0, i.e. (x,y,2) = (0,0,0). Ainsi

Exemple 81 - Encore des sommes directes.
1. Dans R3, les sous espaces F' = Vect((2,1,2),(1,0,2)) et G = Vect((6,—1,0)) sont-ils en somme directe dans R3?
Et Vect((1,1,0),(0,0,1)) et Vect((1,1,1))?
2. Et les sous-espaces de R* suivants : F = Vect((1,1,1,2),(1,2,3,1)) et G = Vect((2,0,4,1))?

Définition 82 - Espaces supplémentaires. Soient F' et G deux sous-espaces vectoriels d'un K-espace vectoriel E.
On dit que F et G sont supplémentaire dans E lorsque

E=FQG.

De maniére équivalente :
Vue B, M x,y)e FxG, u=z+y.

Cette définition est en fait assez proche de la notion de base, mais avec deux sous-espaces vectoriels & la place
d’une famille de vecteurs. Noter que cette écriture indique deux choses la somme est directe, et vaut E entier.
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mple 83 - Des supplémentaires.

. Reprendre les exemples précédents et dire si les sommes sont supplémentaires dans ’espace vectoriels de chaque

exemple.

Notons E = ¢°(R) I'ensemble des fonctions continues de R dans R, ainsi que F' et G les sous-ensembles des

fonctions de F qui sont paires et impaires, respectivement. Montrer que F et GG sont des sous-espaces vectoriels

de F, et qu’ils sont supplémentaires dans F.

. Soit F = {(z,y, 2) € R3, 2z —y + 32 = 0}. Montrer que F est un sous-espace vectoriel de R?, en donner une base.
Donner un supplémentaire de F' dans R3.

. Soit F' = {P € Ry[X], P(1) = 0}. Mémes questions que ci-dessus mais dans 1’espace vectoriel Ro[X].

¥ ArrEnTION ! 8

e Il ne faut pas confondre les notions de « supplémentaire dans E » et de « somme directe ». Dire que F' et G sont

en somme directe revient a affirmer que tout vecteur de E admet AU PLUS UNE décomposition comme somme
d’un vecteur de F' et d’un vecteur de GG. Dire que F et G sont supplémentaires dans E revient a affirmer en plus
que E = F 4+ G et donc que tout vecteur de F admet EXACTEMENT UNE décomposition comme somme d’un
vecteur de F' et d’un vecteur de G.

e Un sous-espace vectoriel posséde-t-il toujours un supplémentaire ? Oui, toutefois nous le démontrerons seulement

en dimension finie (dans le chapitre dédié a la dimension).

o Il est interdit de parler « du » supplémentaire d’un sous-espace vectoriel en général, faute d’unicité (cf. exemples

84 et 85 ci-dessous).

e Il ne faut pas non plus confondre la notion vectorielle de « supplémentaire » avec celle ensembliste de « complé-

Exe

mentaire ». D’une part, il y a absence d’unicité pour la supplémentarité, alors qu’il y a unicité du complémentaire.
D’autre part, un supplémentaire est un sous-espace vectoriel, tandis que le complémentaire d’un sous-espace vec-
toriel ne contient méme pas le vecteur nul.

mple 84 Deux droites NON CONFONDUES passant par (0,0) sont toujours supplémentaires dans R2.

Si P est un plan de R? passant par (0,0,0) et D une droite de R? passant par (0,0,0) NON CONTENUE DANS P, alors
P et D sont supplémentaires dans R3.

Exemple 85  La droite G, = Vect ((1,a, 1)) est un supplémentaire de F = {(x,y, 2)eR3 ‘ T+y+z= 0} dans R3,
pour tout a # —2.

En effet, soit o # —2 et (z,y, z) € R®, montrons que (x,y, z) s’écrit d’une unique maniére comme la somme d’un élément de F

et d

(z

"un élément de G,. Pour tous (a,b,c) € R® et A € R,
a + A =z
= b + al =y
,Y,2) = (a,b,¢) + AM(1,a,1) et (a,b,c)e F <« c4 oA — =
a+ b+ c =0
a + A = T
b + a = y
—
c + A = z

Q+a)d =z+y+2z Li—Li+Lo+Ls—1Ly

Or a # —2, ainsi le systéme est de Cramer (triangulaire de coefficients diagonaux non nuls) et posséde comme souhaité une

unique solution. Remarquons que lorsque o« = —2, on a Go C F, ainsi G, et F ne sauraient étre supplémentaires dans R®.

Exemple 86 L’ensemble .7, (K) des matrices symétriques et I’ensemble 7, (K) des matrices antisymétriques sont
supplémentaires dans ., (K).

En effet, on souhaite établir « VM € #,(K), 3(S,A) € % (K) x #,(K), M =S+ A». Procédons par analyse-synthése.

e Analyse. Soit M € .#,(K) et (S, A) € .Zn(K) x &, (K) tel que M = S + A. Alors M = *S +*A = S — A. Ainsi, par

demi-somme et demi-différence, S = 3 (M + M ) et A= 3 (M — M ) Sous réserve d’existence, il y a donc unicité.

e Synthése. Soit M € .#,(K). Posons S = % (M +"M) et A= % (M —"*M). Alors M = S+ A, S e ,(K) et A€ o,(K),
car
t
to 1 t 71 t trt 71 t o
S = (2(M+ M)) — (‘M) = 3 (M4 M) =5
et de méme 'A = —A.
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Exemple 87  Pour tout P € K[X] non nul de degré n, K[X] = PK[X]|®K,_1[X], ot PK[X] = {PQ | Q € K[X]}.
Indication : pour un polynéme A quelconque, comment ’écrire A = PQ + R avec Re K,,_1[X]?

En effet, pour tout A € K[X], d’aprés le théoréme de division euclidienne, il existe un unique couple (@, R) € K[X] x Kn_1[X]
tel que A = PQ + R.
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